logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)

视觉惯性数据融合在室内导航中的核心价值在于互补纠偏与环境适应性。通过紧耦合算法、多传感器冗余及深度学习优化,系统在复杂场景下的定位误差可控制在1%以内(如100米路径误差<1米)。随着MEMS传感器精度的提升(如下一代陀螺仪零偏不稳定性目标<5°/hr),以及边缘AI算力的发展,智能手机将成为室内外无缝导航的关键载体。📚2 运行结果部分代码:i=0;i=i+1;endfrq=30;🎉3参考文献

#matlab#支持向量机
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)

无人机物流作为解决"最后一公里"配送难题的关键技术,其路径规划需应对复杂城市环境中的动态障碍物、天气变化、续航限制等挑战。基于Q-learning的强化学习算法通过无模型学习机制,在无需预先构建环境模型的情况下,可自适应动态调整路径策略。本文系统梳理了Q-learning在无人机物流路径规划中的技术实现路径,结合三维栅格建模、多目标奖励函数设计、动态探索策略等关键技术,验证了其在路径最优性、收敛速

#无人机#python#开发语言 +1
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)

无人机物流作为解决"最后一公里"配送难题的关键技术,其路径规划需应对复杂城市环境中的动态障碍物、天气变化、续航限制等挑战。基于Q-learning的强化学习算法通过无模型学习机制,在无需预先构建环境模型的情况下,可自适应动态调整路径策略。本文系统梳理了Q-learning在无人机物流路径规划中的技术实现路径,结合三维栅格建模、多目标奖励函数设计、动态探索策略等关键技术,验证了其在路径最优性、收敛速

#无人机#python#开发语言 +1
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)

流场寻路算法(Flow Field Pathfinding)是一种基于流体动力学理论的路径规划方法,通过模拟流体在环境中的流动特性,生成流场向量以指导机器人路径选择。该算法在处理大规模地图、动态环境及多机器人协同路径规划中表现出显著优势,具有高效性、实时性和自然路径生成的特点。本文详细阐述了流场寻路算法的核心原理、实现步骤及其在机器人路径规划中的应用,并通过实验验证了算法的有效性。

#python#算法#机器人 +1
需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)

随着电力系统峰谷负荷差异加剧和可再生能源大规模接入,动态冰蓄冷系统(Dynamic Ice Storage System, DISS)凭借其储能特性在需求响应中展现出显著优势。本文聚焦于DISS与需求响应策略的协同优化,通过建立多目标优化模型、结合模型预测控制(MPC)算法,提出一种兼顾经济性、可靠性和用户舒适度的优化策略。实验表明,该策略可降低用户用电成本15%-20%,同时平抑电网负荷波动,提

#matlab#开发语言#支持向量机
2025年高教社杯E题——AI 辅助智能体测全国大学生数学建模(思路、代码、论文)

国家学生体质健康标准》的颁布,有效地促进了大中小学生关注自身体质健康的发展,激励学生积极进行身体锻炼。通过在体育场地周边安装摄像头,可以对学生的体育动作进行实时捕捉,以便对学生的运动姿态进行分析。例如,在立定跳远教学中,通过记录并分析学生起跳瞬间的腿部发力动作、手臂摆动轨迹、身体腾空姿态以及落地姿势等一系列身体变化的细节数据,可以帮助教师全面了解每个学生动作的优点和不足,从而给出针对性的改进方案。

#人工智能#支持向量机
【两阶段鲁棒优化问题】用列和约束生成方法求解两阶段鲁棒优化问题(Matlab代码实现)

两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。

#matlab#开发语言#支持向量机
【column-and-constraint generation method[CCG]】两阶段鲁棒优化(Python代码实现)

两阶段鲁棒优化(Two-Stage Robust Optimization, TSRO)是处理决策过程中存在不确定性的重要范式,广泛应用于网络/运输、投资组合优化及电力系统调度等领域。然而,其固有的max-min结构导致模型求解具有挑战性。列与约束生成(Column-and-Constraint Generation, C&CG)算法通过分解主问题与子问题、动态生成约束与变量,显著提升了求解效率。

#python#算法#人工智能 +1
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)

在DQN + 人工势场的避障控制中,首先根据环境信息构建人工势场,将障碍物视为斥力源,目标点视为引力源。然后,将势场信息作为DQN的输入状态之一,与原始的环境状态(如位置、速度等)一起输入到DQN网络中。DQN网络根据输入状态输出每个动作的价值,智能体根据这些价值选择最优动作进行执行。

#python#pytorch#神经网络 +1
    共 27 条
  • 1
  • 2
  • 3
  • 请选择