
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
【摘要】随着AI技术的快速发展,大模型岗位需求激增,传统开发者的技能面临转型挑战。国务院近期发布政策推动AI应用落地,企业大模型岗位招聘指数高达94.16,显示AI技术已成为程序员必修课。转型成功案例表明,原有开发经验结合大模型实战能力是关键。系统化学习+商业项目实战的培训模式,能帮助开发者将传统经验转化为AI竞争力。当前技术浪潮不是短暂机会,而是职业发展的必经之路,传统开发者需用大模型思维升级技

在本节中,我们通过将三类经典场景来介绍自博弈的经典应用:棋类游戏,通常涉及完全信息;牌类游戏(包括麻将),通常涉及不完全信息;以及电子游戏,具有实时动作而非简单回合制游戏。

数字图像处理中常用图像分割算法有哪些?1.多数的图像分割算法2.图像边缘分割3.图像阈值分割4.基于区域的分割5.形态学分水岭算法多数的图像分割算法均是基于灰度值的不连续和相似的性质。在前者中,算法以灰度突变为基础分割一幅图像,如图像边缘分割。假设图像不同区域的边界彼此完全不同,且与背景不同,从而允许基于灰度的局部不连续性来进行边界检测。后者是根据一组预定义的准则将一幅图像分割为相似区域,如阈值处

在本节中,我们通过将三类经典场景来介绍自博弈的经典应用:棋类游戏,通常涉及完全信息;牌类游戏(包括麻将),通常涉及不完全信息;以及电子游戏,具有实时动作而非简单回合制游戏。

本文探讨了将Mamba与U-Net结合的创新方法,重点介绍了几种关键的技术融合策略。首先提出用Mamba替代U-Net编码器深层阶段或解码器跳跃连接中的传统卷积层,以高效捕捉长程依赖关系。其次,设计了基于Mamba的轻量化架构,通过残差视觉Mamba层显著降低模型复杂度。论文还提出了多尺度建模方案,结合像素级和块级状态空间模型实现层次化特征提取。在实验设计方面,建议选择医学图像分割数据集进行验证,

摘要:大模型学习需要扎实的AI基础,主要包括四大模块:1.数学理论(线性代数、概率统计、最优化理论);2.机器学习核心(数据划分、性能评估、经典算法思想);3.深度学习基础(神经网络组件、Transformer架构);4.编程工具链(Python、PyTorch、HuggingFace等)。建议学习路径:先补数学基础,再学机器学习思维,深入理解Transformer架构,最后通过实践项目巩固。掌握

摘要:大模型学习需要扎实的AI基础,主要包括四大模块:1.数学理论(线性代数、概率统计、最优化理论);2.机器学习核心(数据划分、性能评估、经典算法思想);3.深度学习基础(神经网络组件、Transformer架构);4.编程工具链(Python、PyTorch、HuggingFace等)。建议学习路径:先补数学基础,再学机器学习思维,深入理解Transformer架构,最后通过实践项目巩固。掌握

AI大模型已成为各行业智能化转型的核心驱动力,从金融风控到工业质检,大模型正深度赋能企业场景。本课程为零基础学员提供从理论到实践的完整学习路径,涵盖Transformer、LLM等核心技术及26+实战项目,助力产品经理、程序员等职场人群掌握大模型应用能力。课程突出三大优势:专家直播教学、20+行业案例拆解、私人化模型部署,帮助学员成为AI解决方案专家,把握薪资增长新机遇。在AI应用爆发初期,掌握大

《基于知识图谱的多模态推理:AI如何像人类一样"看懂"与"想通"》 摘要:本文探讨了人工智能如何通过知识图谱实现多模态推理能力。知识图谱以三元组形式存储事实、常识和情境知识,为AI提供认知基础;多模态推理则让AI能同时处理图像、文本等信息并进行逻辑推理。技术架构包含知识图谱嵌入、跨模态注意力机制和多步推理链构建三个关键环节,使AI不仅能识别场景元素,还能理解

《基于知识图谱的多模态推理:AI如何像人类一样"看懂"与"想通"》 摘要:本文探讨了人工智能如何通过知识图谱实现多模态推理能力。知识图谱以三元组形式存储事实、常识和情境知识,为AI提供认知基础;多模态推理则让AI能同时处理图像、文本等信息并进行逻辑推理。技术架构包含知识图谱嵌入、跨模态注意力机制和多步推理链构建三个关键环节,使AI不仅能识别场景元素,还能理解
