logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

无模型自适应预测控制 (MFAPC) 与迭代学习控制 (MFAILC) 的数值验证仿真程序

本文聚焦无模型自适应预测控制(MFAPC)与无模型自适应迭代学习控制(MFAILC)的数值验证仿真研究。通过构建基于紧致形式动态线性化(CFDL)的仿真程序,分别验证了MFAPC在非线性系统预测跟踪中的有效性,以及MFAILC在非线性系统迭代轨迹跟踪中的性能。仿真结果表明,两种方法均能有效处理非线性系统控制问题,为复杂工业过程的控制提供了新的思路。

#学习#算法#人工智能 +1
使用拍卖的多智能体系统动态分散任务分配算法(Maatlab代码实现)

我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由

#算法#人工智能#支持向量机
使用拍卖的多智能体系统动态分散任务分配算法(Maatlab代码实现)

我们提出了一种基于拍卖的分散式算法,用于解决动态任务分配问题空间分布的多智能体系统的分配问题。在我们的方法中,每个成员多智能体团队中的每个智能体最多被分配一组空间分布的任务中的一项任务,而几个代理可以被分配给同一个任务。任务分配是动态的,因为它是在离散时间阶段(迭代)更新,以考虑代理的当前状态后者朝着上一阶段分配给他们的任务前进。我们提出的方法可以在智能机器(如送货机器人)的源配置问题中找到应用由

#算法#人工智能#支持向量机
【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)

目前,国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6]提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[9]以电网峰谷差为目标函数,利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基

#matlab#开发语言#支持向量机
(DDPG)深度学习神经网络算法DDPG优化解决二维栅格地图路径规划研究(Matlab代码实现)

二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相

#深度学习#神经网络#算法 +1
【在DSP微处理器上进行滤波】采样率对7kW单相住宅逆变器非线性负载滤波的影响研究(Python代码实现)

3]程绪长.基于DSP的单相逆变器的研究[J].电子技术与软件工程, 2015(3):3.DOI:JournalArticle/5b3b91e8c095d70f007e671b.是抑制非线性负载谐波(THD优化至4–7%)的黄金区间,需结合DSP算力与拓扑特性动态调整。[2]陈铭.基于DSP控制的单相并联型混合有源电力滤波器的研究[D].南昌大学,2008.DOI:10.7666/d.y15407

文章图片
#python#开发语言
【无人机】基于遗传算法混合粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)

总结GA更适合静态环境下的全局路径探索,PSO在动态环境中表现更优,而混合算法通过优势互补,在复杂任务中综合性能最佳。混合算法的核心挑战在于平衡计算效率与优化精度,需根据任务需求选择分层、嵌入式或并行策略。未来方向多算法融合:结合蚁群算法、深度学习等进一步提升适应性。硬件加速:利用FPGA或GPU实现混合算法的并行计算。动态参数调整:设计自适应惯性权重和变异概率。通过上述分析可见,混合遗传-粒子群

#无人机#算法#matlab +1
基于飞机配电优化负荷管理系统研究(Matlab代码实现)

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

#matlab#开发语言#支持向量机
【IEEE顶刊复现】水下机器人AUV路径规划和MPC模型预测控制跟踪控制(复现)(Matlab代码实现)

本文复现了IEEE顶刊中关于水下机器人(AUV)路径规划与模型预测控制(MPC)路径跟踪控制的研究成果。通过构建包含路径规划与MPC跟踪控制两个核心模块的优化框架,结合AUV水动力学模型,在2D空间内实现了高精度路径跟踪。研究验证了该框架在复杂海洋环境下的鲁棒性与适应性,为AUV自主导航与任务执行提供了理论支撑。

#机器人#matlab#人工智能 +1
【参数辨识】基于粒子群的非平稳重复过程参数辨识(跟踪)研究(Matlab代码实现)

本文聚焦于非平稳重复过程的参数辨识与跟踪问题,提出一种基于具备动态优化能力(DOP)的粒子群算法的解决方案。该算法能够实时跟踪非平稳重复过程的参数变化,当控制器增益被定义为待跟踪参数的已知函数时,可在运行过程中重新整定这些增益。通过设置标志位,可快速切换不同系统配置与粒子群更新规则。本方案受“即插式直接粒子群重复控制器”启发,适用于重复过程参数辨识、迭代学习估计、动态优化问题以及基于种群的进化优化

#matlab#算法#开发语言 +1
    共 102 条
  • 1
  • 2
  • 3
  • 11
  • 请选择