简介

文章详解了提升大语言模型性能的两种关键技术:RAG(检索增强生成)和微调。RAG通过外部知识库检索增强回答准确性和时效性,微调则通过特定数据集训练使模型更适合特定任务。文章从处理速度、准确性和成本三方面对比了两种技术的差异,指出选择哪种技术应基于具体应用场景和需求,没有绝对正确的选择,只有最适合的解决方案。


近年来,大型语言模型 (LLM) 如雨后春笋般涌现,它们在各种任务中展现出惊人的能力。然而,即使是再强大的 LLM 也并非完美无缺。它们可能会缺乏特定领域的知识,或者在处理一些需要最新信息的任务时表现不佳。为了解决这些问题,RAG (检索增强生成) 和 Fine-tuning (微调) 成为提升 LLM 性能的关键技术。

由nano-banana生成

一、什么是RAG和Fine tuning?

RAG 即检索增强生成,它就像给 LLM 配备了一个巨大的外部知识库。当用户提出问题时,RAG 系统首先从知识库中检索相关的信息,然后将这些信息与用户的问题一起输入 LLM。LLM 利用检索到的信息来生成更准确、更相关的回答。RAG 的优势在于能够让 LLM 利用最新的信息,以及特定领域的信息。例如,如果我想知道某家公司的最新财报数据,传统的 LLM 可能无法提供准确的答案,因为它的知识可能过时了。但通过 RAG,LLM 可以从最新的财报文档中检索信息,并生成准确的回答。

# 简单的 RAG 工作流程
defrag_query(user_question):
# Step 1: 检索相关文档
    relevant_docs = vector_search(user_question, knowledge_base)

# Step 2: 将上下文与问题结合
    enhanced_prompt = f"Context: {relevant_docs}\nQuestion: {user_question}"

# Step 3: 使用上下文生成回复
return llm.generate(enhanced_prompt)

Fine-tuning即微调技术,它 则是一种更直接的方法,它通过使用特定的数据集来训练 LLM,让它更好地完成特定的任务。例如,我们可以使用医学领域的文本数据来 fine-tune 一个 LLM,让它更擅长处理医学相关的任务,如疾病诊断、药物推荐等。实际上是在用特定的数据重新训练神经网络的某些部分,从而永久地改变它的思考和反应方式。Fine-tuning 的优势在于能够提高 LLM 在特定领域的表现。与从头开始训练一个模型相比,Fine-tuning 更加高效、经济。

# 简单的微调工作流程
from transformers import GPT2LMHeadModel, GPT2Tokenizer, TrainingArguments

model = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 特定领域训练数据
training_args = TrainingArguments(
    output_dir='./fine-tuned-model',
    num_train_epochs=3,
    per_device_train_batch_size=4,
    warmup_steps=500,
)

二、RAG和Fine tuning的区别所在

2.1 处理速度

微调技术通过牺牲部分内存占用,实现了更快的推理速度,从而在响应时间上更具优势。相比之下,RAG系统由于需要在生成答案之前执行一个检索步骤,不可避免地会引入额外的延迟,导致整体响应时间变长。一般情况下的响应时间如下:

  • 微调模型:50-200 毫秒
  • RAG 系统:200-800 毫秒(包含检索)

因此,对于实时聊天或高流量 API 等需要快速响应的应用,微调通常在速度上更具优势。 这些应用场景对延迟非常敏感,即使是细微的延迟也会影响用户体验,所以微调带来的速度优势至关重要。

2.2 准确性

对于准确率而言,微调技术展现出了显著的优势,它能够有效地提升各种不同受欢迎程度实体的表现,并且这种提升在实体两端表现得尤为突出。 相比之下,微调在准确率上的表现也要优于其他各种方法。 不过,总体而言,在追求更高准确率的场景下,微调可能是一种更具合理的选择。

微调适用于:

  • 需要一致的领域特定语言和术语
  • 用例模式清晰、稳定
  • 对特定任务的准确性要求极高

RAG 更适用于:

  • 信息频繁更新
  • 需要引用来源
  • 需要整合跨领域知识

2.3 成本

微调 (Fine-tuning) 的成本:

  • 前期成本较高:
  • 数据准备:

    需要准备高质量、与特定任务相关的数据集。 数据收集、清洗、标注都需要花费时间和精力,可能需要人工介入,成本较高。

  • 计算资源:

    微调通常需要大量的计算资源 (GPU 或 TPU)。 训练大型模型需要强大的硬件支持,以及相当长的训练时间,这导致成本的增加。

  • 模型选择和实验存储:

    可能需要尝试不同的预训练模型和微调策略,以找到最适合特定任务的模型。 这个过程需要时间和计算资源。

  • 后期成本较低:
  • 推理成本:

    微调后的模型通常可以快速进行推理,推理成本相对较低。

  • 维护成本:

    模型一旦训练完成,维护成本相对较低,主要在于定期评估模型性能,并在必要时进行重新训练。

RAG (检索增强生成) 的成本:

  • 前期成本较低:
  • 数据准备:

    RAG 可以利用现有的知识库或文档,无需进行大量的标注工作。 数据准备成本主要在于构建和维护知识库,例如建立向量索引。

  • 计算资源:

    RAG 对计算资源的要求相对较低,只需要足够的资源来运行检索和生成模型即可。

  • 后期成本较高:
  • 检索成本:

    每次查询都需要进行检索,检索过程会占用计算资源,并可能产生一定的延迟。 当并发请求量较大时,检索成本会显著增加。

  • 知识库维护:

    知识库需要定期更新和维护,以保证信息的准确性和时效性。 知识库的维护包括数据更新、索引重建、错误修复等,需要持续投入资源。

  • 存储成本:

    需要存储知识库,尤其是当知识库规模较大时,存储成本会增加。

三、所以,如何进行最终的选择?

坦率地说,可能并没有一个适用于所有情况的、放之四海而皆准的绝对“正确”的选择方案。 任何技术或方法的优劣,都不能一概而论,最佳的策略选择实际上是高度情境化的。

也就是说,最适合你的方法,最终取决于你的特定情况、你所面临的各种实际限制条件,以及你希望达成的具体目标。 这些因素共同决定了哪种方案能够最大程度地满足你的需求并实现预期的效果。

因此,在做出任何决策之前,务必对自身的情况进行全面而深入的评估,充分考虑各种限制,并明确最终的目标,才能选择到最适合的解决方案。

希望上面的知识和表格可以对你的选择有些许的帮助……

四、 AI大模型从0到精通全套学习大礼包

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述
在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述
在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

更多推荐