logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)

目前,国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6]提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[9]以电网峰谷差为目标函数,利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基

#支持向量机
(DDPG)深度学习神经网络算法DDPG优化解决二维栅格地图路径规划研究(Matlab代码实现)

二维栅格地图路径规划是机器人导航、游戏智能体控制等领域的核心问题。传统路径规划算法在处理复杂动态环境时存在局限性,而深度强化学习为解决该问题提供了新思路。本文提出基于深度确定性策略梯度(DDPG)算法的路径规划方法,通过构建Actor-Critic神经网络架构,结合经验回放和目标网络技术,在连续动作空间中实现高效路径搜索。实验结果表明,该方法在复杂栅格环境中展现出更强的环境适应性和路径优化能力,相

#支持向量机
基于飞机配电优化负荷管理系统研究(Matlab代码实现)

飞机电力系统 (EPS) 是安全关键系统,可为起落架或飞行控制执行器等重要负载提供电力。随着一些液压、气动和机械部件被电气部件取代,现代飞机 EPS 变得越来越复杂,因为硬件子系统数量更多以及它们与嵌入式控制软件的交互 [1]。电力系统的电气化允许实施智能控制技术,通过对电力资源的优化管理来实现更高的性能和整体效率。然而,今天的 EPS 设计主要遵循顺序衍生设计过程,其估计早期设计决策对最终实施的

#matlab#开发语言#支持向量机
【IEEE顶刊复现】水下机器人AUV路径规划和MPC模型预测控制跟踪控制(复现)(Matlab代码实现)

本文复现了IEEE顶刊中关于水下机器人(AUV)路径规划与模型预测控制(MPC)路径跟踪控制的研究成果。通过构建包含路径规划与MPC跟踪控制两个核心模块的优化框架,结合AUV水动力学模型,在2D空间内实现了高精度路径跟踪。研究验证了该框架在复杂海洋环境下的鲁棒性与适应性,为AUV自主导航与任务执行提供了理论支撑。

#机器人#matlab#人工智能 +1
【在DSP微处理器上进行滤波】采样率对7kW单相住宅逆变器非线性负载滤波的影响研究(Python代码实现)

3]程绪长.基于DSP的单相逆变器的研究[J].电子技术与软件工程, 2015(3):3.DOI:JournalArticle/5b3b91e8c095d70f007e671b.是抑制非线性负载谐波(THD优化至4–7%)的黄金区间,需结合DSP算力与拓扑特性动态调整。[2]陈铭.基于DSP控制的单相并联型混合有源电力滤波器的研究[D].南昌大学,2008.DOI:10.7666/d.y15407

文章图片
#python#开发语言
基于模型预测控制与滚动时域估计应用于移动机器人研究(Matlab代码实现)

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。

#matlab#人工智能#算法 +1
【路径规划】(螺旋)基于A星全覆盖路径规划研究(Matlab代码实现)

全覆盖路径规划是机器人、无人机及自动化设备在环境监测、农业喷洒、建筑3D打印等领域的关键技术。传统螺旋规划虽能实现区域遍历,但存在路径冗余、复杂环境适应性差等问题。本文提出一种融合A*算法的螺旋式全覆盖路径规划方法,通过构建分层栅格地图、设计动态启发函数及优化螺旋扩展策略,实现复杂环境下的高效、无遗漏覆盖。实验表明,该方法在路径长度、覆盖率及死点数量等指标上显著优于传统螺旋算法,为动态环境下的全覆

#matlab#算法#开发语言 +1
【路径规划】(A星+GA+DWA)基于A星融合遗传算法GA融合DWA算法的机器人动态避障算法路径规划研究(Matlab代码实现)

本文提出一种结合A星算法、遗传算法(GA)与动态窗口法(DWA)的混合路径规划框架,旨在解决移动机器人在动态复杂环境中的全局路径优化与实时避障问题。通过A星算法生成初始全局路径,遗传算法对路径进行全局优化以提升平滑性与安全性,DWA算法在局部范围内实现动态避障与速度调整。实验结果表明,该混合算法在路径长度、避障成功率及实时性方面显著优于单一算法,尤其在动态障碍物场景中表现出强鲁棒性。

#算法#机器人#matlab +1
【车间调度】基于非支配排序遗传算法NSGAII的柔性作业车间调度问题研究(Matlab代码实现)

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是传统作业车间调度问题的拓展,具有更高的复杂性和灵活性。NSGA-II作为一种有效的多目标优化算法,在解决FJSP方面展现出强大的能力。本文详细探讨了NSGA-II在FJSP中的应用,包括算法原理、染色体编码、交叉变异操作、实验设计与结果分析等,旨在为实际生产调度提供有效的解决方案。

#matlab#前端#数据库 +1
六自由度机械臂ANN人工神经网络设计:正向/逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)

本文聚焦于六自由度机械臂,旨在开发一种可绘图机器人。在运动学求解方面,正向运动学采用DH参数法,逆向运动学采用几何分析法并完成路径规划与平滑处理;动力学控制上,正向动力学通过带PI控制器的前馈控制实现,逆向动力学方程采用拉格朗日 - 欧拉法推导。同时,引入人工神经网络解决逆向动力学问题,克服其固有缺陷,提升机械臂性能。实验结果表明,该创新控制器架构在降低位置误差、提升神经网络估计关节角度准确性方面

#matlab#开发语言#支持向量机
    共 71 条
  • 1
  • 2
  • 3
  • 8
  • 请选择