
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
需要注意的是,显存的占用情况可能会受到硬件设备、深度学习框架和模型实现的影响。具体来说,INT8在相同的内存空间下可以存储更多的数据,从而可以在相同的计算资源下进行更多的并行计算。需要注意的是,推理速度还受到模型大小、输入数据大小、计算操作的复杂度以及硬件设备的性能等因素的影响。综上所述,使用INT8和FP16数据类型可以在大语言模型的推理过程中提高推理速度,但需要根据具体场景和硬件设备的支持情况

本文主要讲解了大模型分布式训练并行技术的数据并行,并以Pytorch为主线讲解了DP、DDP、FSDP三种不同的数据并行方案。单进程多线程模式,由于锁的机制导致线程间同步存在瓶颈。使用普通的All-Reduce机制,所有的卡需要将梯度同步给0号节点,并由0号节点平均梯度后反向传播,再分发给所有其他节点,意味着0号节点负载很重。由于第二点的原因,导致0号GPU通讯成本是随着GPU数量的上升而线性上升

和流水线并行类似,张量并行也是将模型分解放置到不同的GPU上,以解决单块GPU无法储存整个模型的问题。和流水线并行不同的地方在于,

在这个示例中,输入数据是一个句子,奖励数据是一个实数值,动作数据是生成的句子,状态数据是模型的隐藏状态。每一行代表一个样本,第一列是输入数据,第二列是对应的奖励数据,第三列是生成的动作数据,第四列是状态数据。需要注意的是,具体的数据集格式可能会因任务类型、数据来源和使用的深度学习框架而有所不同。需要注意的是,具体的数据集格式可能会因任务类型、数据来源和使用的深度学习框架而有所不同。需要注意的是,使

因此,需引入额外的通信操作,该策略可以允许更多的专家网络们同时被训练,而其数量限制与计算单元的数量(如:GPU数量)是正相关的。这是 Google 在2021年底推出的一个超大模型,完整的 GLaM 总共有 1.2T 参数,每个 MoE 包含 64 个专家,总共 32 个 MoE 层,但在推理期间,模型只会激活 97B 的参数,占总参数的 8%。该模式针对不同的模型和设备拓扑需要专门的并行策略,同

Repulsion Loss核心思想是通过设置损失函数,使得预测框与所负责的真实目标框的距离缩小,同时使得其与周围非负责目标框(包括真实目标框和预测框)的距离加大。具体来说,如果预测框与周围目标的距离越大,损失值会越小,从而鼓励模型将预测框放在距离其他目标较远的位置,减少遮挡的影响。另一种是crowded,即由需要检测的目标物体自身造成的遮挡这两种遮挡都会对目标检测的准确性产生影响,因此需要采取不

【代码】深度学习中禁用wandb方法。
目标检测技术在过去的十几年中,从传统的方法逐步转变成基于深度学习驱动的方法。2012年,AlexNet在ImageNet竞赛中胜利,促进了目标检测技术的发展。目标检测领域的技术发展经历了从基于卷积神经网络(CNN)的架构到基于Transformer架构的重要转变。最初的突破来自于基于CNN的模型,如R-CNN系列(包括R-CNN、Fast R-CNN和Faster R-CNN),这些模型通过引入区

因此,需引入额外的通信操作,该策略可以允许更多的专家网络们同时被训练,而其数量限制与计算单元的数量(如:GPU数量)是正相关的。这是 Google 在2021年底推出的一个超大模型,完整的 GLaM 总共有 1.2T 参数,每个 MoE 包含 64 个专家,总共 32 个 MoE 层,但在推理期间,模型只会激活 97B 的参数,占总参数的 8%。该模式针对不同的模型和设备拓扑需要专门的并行策略,同










