
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
介绍了运用深度学习的手写数字和符号识别系统,提供完整的实现代码见文末。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,分析其性能指标,如mAP、F1 Score等。深入解释了YOLOv8的原理,提供相应的Python代码、训练数据集,集成了PySide6的UI界面,以及基于SQLite数据库的登录注册界面。系统能够精准检测手写数字和符号,支持图片、图片文件夹、视

血细胞智能检测与计数软件应用深度学习技术智能检测血细胞图像中红细胞、镰状细胞等不同形态细胞并可视化计数,以辅助医学细胞检测。本文详细介绍血细胞智能检测与计数软件,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中可以选择各种图片、视频进行检测识别;可对图像中存在的多目标进行识别分类,检测速度快、识别精度高。博文提供了完整的Python代码和使用教程,适合新入门的朋友参

本文介绍了一种基于深度学习的遥感目标检测系统系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的遥感目标。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集,以及基于PySide6的用户界面(UI)。该系统实现了对图像中遥感目标的准确识别和分类,并包含了基于SQLit

鸟类识别是深度学习和机器视觉领域的一个热门应用,本文详细介绍基于YOLOv5的鸟类检测识别系统,在介绍算法原理的同时,给出Python实现代码以及PyQt的UI界面。在界面中可选择各种鸟类图片、视频以及开启摄像头进行检测识别;可通过UI界面选择文件,切换标记识别目标,支持切换模型,支持用户登录注册界面;基于YOLOv5模型训练实现,提供训练数据集和训练代码,检测速度快、识别精度较高;另外,还提供了

本篇博客介绍了利用深度学习构建暴力行为检测系统的方法,并提供了完整实现代码和数据集下载。该系统基于YOLOv8算法,与YOLOv7、YOLOv6、YOLOv5等前代算法进行了性能对比,重点展示了在不同媒介如图像和视频中识别暴力行为的准确性。文章提供了YOLOv8的原理解析、Python代码、训练数据集和基于PySide6的UI。系统功能包括精准检测分类、用户管理、模型切换及UI自定义。旨在为深度学

机场航拍图像检测软件使用深度学习技术检测机场航拍图像中的飞机目标等,识别航拍目标等结果并记录和保存,辅助机场智能管理运行。在介绍算法原理的同时,给出Python的实现代码、训练数据集,以及PyQt的UI界面。机场航拍检测系统主要检测飞机的数目、位置、预测置信度等;连接摄像头设备可开启实时检测功能,另外对图片、视频等文件也可进行测试和检测;登录系统提供用户注册、登录、管理功能;训练和调优的模型可有效

这篇介绍了一个基于深度学习的常见手势识别系统,该系统能够高精度地识别常见手势。通过比较YOLOv8与YOLOv7、YOLOv6、YOLOv5的性能,如mAP和F1得分,文章深入分析了其优势。系统提供了完整的实现代码,包括训练数据集和基于PySide6的用户界面,还有一个基于SQLite的登录注册功能,增强了用户体验。支持多种输入源,如图片、视频和实时摄像头,并具备高级功能,如热力图分析、类别统计和

农作物叶片病害检测系统用于智能检测常见农作物叶片病害情况,自动化标注、记录和保存病害位置和类型,辅助作物病害防治以增加产值。本文详细介绍基于YOLOv5深度学习模型的农作物叶片病害检测系统,在介绍算法原理的同时,给出Python的实现代码、PyQt的UI界面以及训练数据集。在界面中可以选择各种图片、视频进行检测识别;可对图像中存在的多个目标进行识别分类,可识别多种农作物叶片病害类型。博文提供了完整

火焰检测系统用于检测日常是否出现火情,支持图片、视频、摄像头等多方式检测火焰、实现火灾警报功能,提供了登录注册界面。在介绍系统实现原理的同时,给出部分Python的实现代码以及PyQt的UI界面。火焰检测系统主要用于日常生活中火情图像的识别,基于YOLOv5模型识别图像中可能出现火灾的位置、着火点数目、置信度等;可分析图片、视频和摄像画面中的火焰情况,自由切换火焰检测模型;系统设计有注册登录功能,

吸烟行为检测软件用于日常场景下吸烟行为监测,快速准确识别和定位吸烟位置、记录并显示检测结果,辅助公共场所吸烟安全报警等。本文详细介绍吸烟行为检测系统,在介绍算法原理的同时,给出Python的实现代码、训练数据集以及PyQt的UI界面。在界面中可以选择各种图片、视频进行检测识别,基于YOLOv5算法实现对图像中存在的多目标进行识别分类。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考








