简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。MobileNetV2 是一种用于图像分类和目标检测的轻量级深度神经网络模型。它是MobileNetV1的进一步改进版本,旨在提供更好的性能和更高的效率。
使用pip install mysqlclient命令安装MySQLclient失败简介:在使用Django来操作MySQL时,实际上实在底层通过Python来进行操作,那么需要安装一个驱动程序,例如pymysql和mysqlclientmysqlclient:是MySQL-python的另外一个分支。支持Python3并且修复了一些bug。使用pip install mysqlcli...
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集(‘土豆’, ‘大白菜’, ‘大葱’, ‘莲藕’, ‘菠菜’, ‘西红柿’, ‘韭菜’, ‘黄瓜’),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片(‘细菌性叶枯病’, ‘稻瘟病’, ‘褐斑病’, ‘稻瘟条纹病毒病’)作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一
食物识别系统。该项目通过构建包含11种常见食物类别(包括’Bread’, ‘Dairy product’, ‘Dessert’, ‘Egg’, ‘Fried food’, ‘Meat’, ‘Noodles-Pasta’, ‘Rice’, ‘Seafood’, ‘Soup’, ‘Vegetable-Fruit’)的图片数据集,并利用TensorFlow框架下的ResNet50神经网络模型进行开发。项
果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜(‘土豆’, ‘圣女果’, ‘大白菜’, ‘大葱’, ‘梨’, ‘胡萝卜’, ‘芒果’, ‘苹果’, ‘西红柿’, ‘韭菜’, ‘香蕉’, ‘黄瓜’),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。局部感知能力:通过卷积层,CNN能够捕捉图像的局部特征,如边缘和纹理信息,这使得它在处理图像时具有空间感知能力。参数共享:卷积层中的权
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集(‘土豆’, ‘大白菜’, ‘大葱’, ‘莲藕’, ‘菠菜’, ‘西红柿’, ‘韭菜’, ‘黄瓜’),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
手势识别系统,使用Python作为主要编程语言,通过收集了10种手势图片数据集(0~9),然后基于TensorFlow搭建卷积神经网络算法模型,然后训练模型得到一个识别精度较高的模型文件,在基于Django搭建网页端操作界面平台,实现用户上传一张图片识别其名称。卷积神经网络(CNN)是一种深度学习算法,特别适合于图像识别任务。它通过模拟人类视觉皮层处理图像的方式,能够自动提取图像特征。卷积层:使用
图像识别是计算机视觉领域的重要研究方向,它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制,设计高效的图像识别算法变得尤为重要。MobileNetV2是谷歌(Google)团队在2018年提出的一种轻量级卷积神经网络模型,旨在在保持准确性的前提下,极大地减少模型的参数数量和计算复杂度,从而适用于移动设备和嵌入式系统等资源受限的场景。