
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
kafka消息发送大小限制 python confluent_kafka客户端。kafka的broker限制调整过后,发送图片base64编码,出现下面的问题。
SelfDirveCar_OpenCV_MLP_RaspberryPi基于树莓派与Opencv和MLP神经网络搭建的自动驾驶小车(Self driving car based on raspberry pie and opencv and MLP Neural Network)搭建一个自己的自动驾驶小车本项目采用的机器学习的MLP算法,本质上是一个多分类问题。系统复杂度低,集成性高。后续会做进一步
除了线性代数之外,概率论(probability theory)也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。对随机事件发生的可能性进行规范的数学描述就是概率论的公理..
1956 年召开的达特茅斯会议宣告了人工智能的诞生。在人工智能的襁褓期,各位奠基者们,包括约翰·麦卡锡、赫伯特·西蒙、马文·明斯基等未来的图灵奖得主,他们的愿景是让“具备抽象思考能力的程序解释合成的物质如何能够拥有人类的心智”。通俗地说,理想的人工智能应该具备抽象意义上的学习、推理与归纳能力,其通用性将远远强于解决国际象棋或是围棋这些具体问题的算法。要实现这样的人工智能,不可或缺的基础是形...
1956 年召开的达特茅斯会议宣告了人工智能的诞生。在人工智能的襁褓期,各位奠基者们,包括约翰·麦卡锡、赫伯特·西蒙、马文·明斯基等未来的图灵奖得主,他们的愿景是让“具备抽象思考能力的程序解释合成的物质如何能够拥有人类的心智”。通俗地说,理想的人工智能应该具备抽象意义上的学习、推理与归纳能力,其通用性将远远强于解决国际象棋或是围棋这些具体问题的算法。要实现这样的人工智能,不可或缺的基础是形...
线性代数“人工智能基础课”将从数学基础开始。必备的数学知识是理解人工智能不可或缺的要素,今天的种种人工智能技术归根到底都建立在数学模型之上,而这些数学模型又都离不开线性代数(linear algebra)的理论框架。事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后...
从本质上讲,人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论同样是人工智能必备的基础知识。最优化理论(optimization)研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值(最小值)的数值。如果把给定的目标函数看成连绵的山脉,最优化的过程就是判断顶峰的位置并找到到达顶峰路径..
从本质上讲,人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论同样是人工智能必备的基础知识。最优化理论(optimization)研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值(最小值)的数值。如果把给定的目标函数看成连绵的山脉,最优化的过程就是判断顶峰的位置并找到到达顶峰路径..
导入以下代码控制GPU内存占用,爆出与tensorflow2.0版本不兼容问题。只需将下面的代码:import osimport tensorflow as tfos.environ["CUDA_VISIBLE_DEVICES"] = "2"config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fracti...