
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
今天,Google 发布了一系列最新的开放式大型语言模型 —— Gemma!Google 正在加强其对开源人工智能的支持,我们也非常有幸能够帮助全力支持这次发布,并与 Hugging Face 生态完美集成。Gemma 提供两种规模的模型:7B 参数模型,针对消费级 GPU 和 TPU 设计,确保高效部署和开发;2B 参数模型则适用于 CPU 和移动设备。每种规模的模型都包含基础版本和经过指令调优
本文提供了一个使用 Hugging Face ???? Transformers 在任意多语种语音识别 (ASR) 数据集上微调 Whisper 的分步指南。同时,我们还深入解释了 Whisper 模型、Common Voice 数据集以及微调等理论知识,并提供了数据准备和微调的相关代码。如果你想要一个全部是代码,仅有少量解释的 Notebook,可以参阅这个 Google Colab。目录简介在
在人工智能技术领域,GPU 资源一直是推动研究和应用的关键因素。然而,GPU 的成本和可用性对于许多研究人员和开发者来说却是一个显著的障碍。在 Hugging Face,我们希望人工智能技术可以更加普惠化,更多开发者可以参与其中共同探索,在人工智能技术浪潮中创造出让更多人受益的产品。为此,我们计划提供 1000 万美元的免费共享 GPU,借以推动下一波的人工智能创新。什么是 ZeroGPU?Zer
LeRobot v0.4.0 为开源机器人领域带来重要升级:引入可扩展的 Datasets v3.0、强大的新 VLA (视觉-语言-动作) 模型如 PI0.5 与 GR00T N1.5,以及全新的插件系统,简化硬件集成。从重构的数据集到灵活的编辑工具、新的仿真环境,以及面向硬件的全新插件系统,LeRobot 正在持续演进,以满足前沿具身智能 (Embodied AI) 不断发展的需求。模型需要在
在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 FLAN-T5 XXL 模型。在此过程中,我们会使用到 Hugging Face 的 Transformers、Accelerate 和 PEFT 库。大语言模型低秩适配论文:https://arxi.
Google 发布了最新的开放大语言模型 Gemma 2,我们非常高兴与 Google 合作,确保其在 Hugging Face 生态系统中的最佳集成。你可以在 Hub 上找到 4 个开源模型 (2 个基础模型和 2 个微调模型) 。发布的功能和集成包括:Hub 上的模型https://hf.co/collections/google/g-667d6600fd5220e7b967f315Huggi
本文将展示如何在 Habana® Gaudi®2 上使用 ???? Optimum Habana。Optimum Habana 是 Gaudi2 和 ???? Transformers 库之间的桥梁。本文设计并实现了一个大模型推理基准测试,证明了通过使用 Optimum Habana 你将能够在 Gaudi2 上获得 比目前市面上任何可用的 GPU 都快的推理速度。Habana® Gaudi®2:
今天,Google 发布了一系列最新的开放式大型语言模型 —— Gemma!Google 正在加强其对开源人工智能的支持,我们也非常有幸能够帮助全力支持这次发布,并与 Hugging Face 生态完美集成。Gemma 提供两种规模的模型:7B 参数模型,针对消费级 GPU 和 TPU 设计,确保高效部署和开发;2B 参数模型则适用于 CPU 和移动设备。每种规模的模型都包含基础版本和经过指令调优
如果你对如何更快构建 ML 解决方案感兴趣,请访问 专家加速计划 登陆页面并通过 填写表单 联系我们!专家加速计划:https://hf.co/support业务背景随着 IT 技术不断地在发展并重塑我们的世界,在行业内创造一个更加多样化和包容性的环境势在必行。旨在应对这一挑战,Witty Works 于 2018 年成立了。Witty Works 起初是一家为组织提供多元化建议的咨询公司,主要帮
介绍S2S (语音到语音)是 Hugging Face 社区内存在的一个令人兴奋的新项目,它结合了多种先进的模型,创造出几乎天衣无缝的体验: 你输入语音,系统会用合成的声音进行回复。https://github.com/huggingface/speech-to-speech该项目利用 Hugging Face 社区中的 Transformers 库提供的模型实现了流水化处理。该流程处理由以下组件







