几个常用的不等式

1.伯努利不等式

命题
h>−1,n∈N+h>-1, n \in \mathbf{N}_{+}h>1,nN+,则成立不等式
(1+h)n⩾1+nh (1+h)^{n} \geqslant 1+n h (1+h)n1+nh
其中当n>1n>1n>1时成立等号的充分必要条件是h=0h=0h=0

证明:由于n=1n=1n=1h=0h=0h=0时不等式明显成立(且其中均成立等号),一下只需讨论n>1n>1n>1h≠0h \neq 0h=0的情况。
(1+h)n−1(1+h)^{n}-1(1+h)n1做因式分解,就可以得到
(1+h)n−1=h[1+(1+h)+(1+h)2+⋯+(1+h)n−1] (1+h)^{n}-1=h\left[1+(1+h)+(1+h)^{2}+\cdots+(1+h)^{n-1}\right] (1+h)n1=h[1+(1+h)+(1+h)2++(1+h)n1]
h>0h>0h>0时,在右边方括号内从第二项起都大于1,因此就有(1+h)n−1>nh(1+h)^{n}-1>n h(1+h)n1>nh
−1<h<0-1<h<01<h<0时在上述公式右边方括号中从第二项起都小于1,因此方括号中表达式之和小于nnn,由于h<0h<0h<0,因此得到(1+h)n−1>nh(1+h)^{n}-1>n h(1+h)n1>nh
推广:令h=B/Ah=B/Ah=B/A,其中A>0,A+B>0A>0, A+B>0A>0,A+B>0,则条件1+h>01+h>01+h>0成立,将这个hhh代入伯努利不等式中,就可以得到下一个不等式:
命题:设有A>0,A+B>0,n∈N+A>0, A+B>0, n \in \mathbf{N}_{+}A>0,A+B>0,nN+,则成立不等式(A+B)n⩾An+nAn−1B(A+B)^{n} \geqslant A^{n}+n A^{n-1} B(A+B)nAn+nAn1B,而且当n>1n>1n>1时其中成立等号的充分必要条件是B=0B=0B=0

2.算术平均值-几何平均值不等式

命题:设a1,a2,⋯ ,ana_{1}, a_{2}, \cdots, a_{n}a1,a2,,annnn个非负实数,则成立不等式:
a1+a2+⋯+ann⩾a1a2⋯ann \frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geqslant \sqrt[n]{a_{1} a_{2} \cdots a_{n}} na1+a2++anna1a2an
其中等号成立的充分必要条件是a1=a2=⋯=ana_{1}=a_{2}=\cdots=a_{n}a1=a2==an

证1:一开始可以看出,如果在a1,a2,⋯ ,ana_{1}, a_{2}, \cdots, a_{n}a1,a2,,an中出现0,则不等式已经成立,又可以看出,这时成立等号的充分必要条件是其中每个数为0,因此下面只需要对a1,a2,⋯ ,ana_{1}, a_{2}, \cdots, a_{n}a1,a2,,annnn个正数的情况来证明就够了。
应用数学归纳法,在n=1n=1n=1时结论是平凡的,在n=2n=2n=2时的结论是中学数学已包含的内容,现设n=kn=kn=k时不等式已成立,然后讨论n=k+1n=k+1n=k+1,将k+1k+1k+1个正数a1,a2,⋯ ,ana_{1}, a_{2}, \cdots, a_{n}a1,a2,,an的算术平均值分解如下:
a1+a2+⋯+ak+1k+1=a1+a2+⋯+akk+kak+1−(a1+a2+⋯+ak)k(k+1) \frac{a_{1}+a_{2}+\cdots+a_{k+1}}{k+1}=\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}+\frac{k a_{k+1}-\left(a_{1}+a_{2}+\cdots+a_{k}\right)}{k(k+1)} k+1a1+a2++ak+1=ka1+a2++ak+k(k+1)kak+1(a1+a2++ak)
然后将上式右边的两项分别记为AAABBB,这时条件A>0,A+B>0A>0, A+B>0A>0,A+B>0满足,因此就可以应用伯努利不等式的推广不等式进行如下计算:
(a1+a2+⋯+ak+1k+1)k+1=(A+B)k+1⩾Ak+1+(k+1)AkB=Ak(A+(k+1)B)=(a1+a2+⋯+akk)k⋅ak+1⩾a1a2⋯akak+1 \begin{aligned} \left(\frac{a_{1}+a_{2}+\cdots+a_{k+1}}{k+1}\right)^{k+1} &=(A+B)^{k+1} \geqslant A^{k+1}+(k+1) A^{k} B \\ &=A^{k}(A+(k+1) B) \\ &=\left(\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}\right)^{k} \cdot a_{k+1} \\ & \geqslant a_{1} a_{2} \cdots a_{k} a_{k+1} \end{aligned} (k+1a1+a2++ak+1)k+1=(A+B)k+1Ak+1+(k+1)AkB=Ak(A+(k+1)B)=(ka1+a2++ak)kak+1a1a2akak+1
在不等式中成立等号的条件也可以用数学归纳法得到,在n=1n=1n=1时已成立,设在n=kn=kn=k时结论为真,则在n=k+1n=k+1n=k+1时可从上述推导看出等号成立的条件是kak+1=a1+a2+⋯+akk a_{k+1}=a_{1}+a_{2}+\cdots+a_{k}kak+1=a1+a2++aka1=a2=⋯=aka_{1}=a_{2}=\cdots=a_{k}a1=a2==ak
也即是a1=a2=⋯=ak=ak+1a_{1}=a_{2}=\cdots=a_{k}=a_{k+1}a1=a2==ak=ak+1

证2:采用拉格朗日乘数法,令a1a2⋯an=aa_{1} a_{2} \cdots a_{n}=aa1a2an=a,并做辅助函数
F=a1+a2+⋯+an+λ(a1a2⋯an−a)F=a_{1}+a_{2}+\dots+a_{n}+\lambda\left(a_{1} a_{2} \cdots a_{n}-a\right)F=a1+a2++an+λ(a1a2ana)

{Fa1′=1+λa2a3⋯an=0Fa2′=1+λa1a3⋯an=0⋯⋯Fan′=1+λa1a2⋯an−1=0Fλ′=a1a2⋯an−a=0 \left\{\begin{array}{l}{F_{a_{1}}^{\prime}=1+\lambda a_{2} a_{3} \cdots a_{n}=0} \\ {F_{a_{2}}^{\prime}=1+\lambda a_{1} a_{3} \cdots a_{n}=0} \\ {\cdots \cdots} \\ {F_{a_{n}}^{\prime}=1+\lambda a_{1} a_{2} \cdots a_{n-1}=0} \\ {F_{\lambda}^{\prime}=a_{1} a_{2} \cdots a_{n}-a=0}\end{array}\right. Fa1=1+λa2a3an=0Fa2=1+λa1a3an=0Fan=1+λa1a2an1=0Fλ=a1a2ana=0
a1=a2=⋯=an=ana_{1}=a_{2}=\dots=a_{n}=\sqrt[n]{a}a1=a2==an=na
由于a1,a2,⋯ ,an>0a_{1}, a_{2}, \cdots, a_{n}>0a1,a2,,an>0,所以a1+a2+⋯+ana_{1}+a_{2}+\dots+a_{n}a1+a2++an无最大值,其最小值为
(a1+a2+⋯+an)min⁡=nan \left(a_{1}+a_{2}+\cdots+a_{n}\right)_{\min }=n \sqrt[n]{a} (a1+a2++an)min=nna

a1+a2+⋯+an⩾nan=na1a2⋯ann a_{1}+a_{2}+\dots+a_{n} \geqslant n \sqrt[n]{a}=n \sqrt[n]{a_{1} a_{2} \cdots a_{n}} a1+a2++annna =nna1a2an
得证

3.几何平均值-调和平均值不等式

命题:若ak>0,k=1,2,⋯ ,na_{k}>0, k=1,2, \cdots, nak>0,k=1,2,,n,则有
(∏k=1nak)1n⩾n∑k=1n1ak \left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}} \geqslant \frac{n}{\sum_{k=1}^{n} \frac{1}{a_{k}}} (k=1nak)n1k=1nak1n

证明:首先对数函数具有凸性,要证算术平均值-几何平均值不等式:
1n∑k=1nak≥∏k=1nak \frac{1}{n} \sum_{k=1}^{n} a_{k} \geq \sqrt{\prod_{k=1}^{n} a_{k}} n1k=1nakk=1nak
两边取对数,即证:
ln⁡(1n∑k=1nak)≥1n∑k=1nln⁡ak \ln \left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right) \geq \frac{1}{n} \sum_{k=1}^{n} \ln a_{k} ln(n1k=1nak)n1k=1nlnak
对于几何平均值-调和平均值不等式而言:
∏k=1nakn≥n∑k=1n1ak \sqrt[n]{\prod_{k=1}^{n} a_{k}} \geq \frac{n}{\sum_{k=1}^{n} \frac{1}{a_{k}}} nk=1nak k=1nak1n
先取倒数,得:
∏k=1n1akn≤1n∑k=1n1ak \sqrt[n]{\prod_{k=1}^{n} \frac{1}{a_{k}}} \leq \frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{k}} nk=1nak1 n1k=1nak1
再取对数:
1n∑k=1nln⁡1ak≤ln⁡(1n∑k=1n1ak) \frac{1}{n} \sum_{k=1}^{n} \ln \frac{1}{a_{k}} \leq \ln \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{k}}\right) n1k=1nlnak1ln(n1k=1nak1)
证毕。

4.柯西不等式

命题:对实数a1,a2,⋯ ,ana_{1}, a_{2}, \cdots, a_{n}a1,a2,,anb1,b2,⋯ ,bnb_{1}, b_{2}, \cdots, b_{n}b1,b2,,bn成立
∣∑i=1naibi∣⩽∑i=1nai2∑i=1nbi2 \left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leqslant \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}} i=1naibii=1nai2 i=1nbi2

证明:引入变量λ\lambdaλ,写出如下的非负二次三项式
0⩽∑i=1n(λai−bi)2=λ2∑i=1nai2−2λ∑i=1naibi+∑i=1nbi2 0 \leqslant \sum_{i=1}^{n}\left(\lambda a_{i}-b_{i}\right)^{2}=\lambda^{2} \sum_{i=1}^{n} a_{i}^{2}-2 \lambda \sum_{i=1}^{n} a_{i} b_{i}+\sum_{i=1}^{n} b_{i}^{2} 0i=1n(λaibi)2=λ2i=1nai22λi=1naibi+i=1nbi2
如果a1,a2,⋯ ,ana_{1}, a_{2}, \cdots, a_{n}a1,a2,,an全为0,可以发现柯西不等式已成立。否则,λ2\lambda^{2}λ2项的系数不会是0,因此它的判别式非正,这就导致
(∑i=1naibi)2⩽(∑i=1nai2)⋅(∑i=1nbi2) \left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right) (i=1naibi)2(i=1nai2)(i=1nbi2)
两边开方,就得到所要求证的不等式。
补充:在柯西不得鞥是中等号成立的充分必要条件是两个序列{ai}1⩽i⩽n\left\{a_{i}\right\}_{1 \leqslant i \leqslant n}{ai}1in{bi}1⩽i⩽n\left\{b_{i}\right\}_{1 \leqslant i \leqslant n}{bi}1in成比例。

5.其它不等式
  1. x>0,y>0,p>0,q>0,1p+1q=1x>0, y>0, p>0, q>0, \frac{1}{p}+\frac{1}{q}=1x>0,y>0,p>0,q>0,p1+q1=1,则有xy⩽xpp+yqqx y \leqslant \frac{x^{p}}{p}+\frac{y^{q}}{q}xypxp+qyq

证明:在xy⩽xpp+yqqx y \leqslant \frac{x^{p}}{p}+\frac{y^{q}}{q}xypxp+qyq两边取对数,得到ln⁡(xy)⩽ln⁡(xpp+yqq)\ln (x y) \leqslant \ln \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right)ln(xy)ln(pxp+qyq)
由于x>0x>0x>0,令f(x)=ln⁡x⇒f′′(x)=−1x2<0⇒f(x)f(x)=\ln x \Rightarrow f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0 \Rightarrow f(x)f(x)=lnxf(x)=x21<0f(x)的图像是凸的,,由凸凹性定义得:
f[λx1+(1−λ)y1]⩾λf(x1)+(1−λ)f(y1) f\left[\lambda x_{1}+(1-\lambda) y_{1}\right] \geqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(y_{1}\right) f[λx1+(1λ)y1]λf(x1)+(1λ)f(y1)
在上式中,令λ=1p,x1=xp,y1=yq\lambda=\frac{1}{p}, x_{1}=x^{p}, y_{1}=y^{q}λ=p1,x1=xp,y1=yq,则1−λ=1−1p=1q1-\lambda=1-\frac{1}{p}=\frac{1}{q}1λ=1p1=q1,于是就得到
ln⁡(xpp+yqq)⩾1pf(xp)+1qf(yq)=ln⁡(xy) \ln \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right) \geqslant \frac{1}{p} f\left(x^{p}\right)+\frac{1}{q} f\left(y^{q}\right)=\ln (x y) ln(pxp+qyq)p1f(xp)+q1f(yq)=ln(xy)
即得:
xy⩽xρp+yyq x y \leqslant \frac{x^{\rho}}{p}+\frac{y^{y}}{q} xypxρ+qyy

  1. f(x)f(x)f(x)[a,,b][a,,b][a,,b]ppp次方可积,g(x)g(x)g(x)[a,,b][a,,b][a,,b]qqq次方可积,则
    ∣∫abf(x)⋅g(x)dx∣⩽[∫ab∣f(x)∣pdx]1p⋅[∫ab∣g(x)∣qdx]1q \left|\int_{a}^{b} f(x) \cdot g(x) \mathrm{d} x\right| \leqslant\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}} \cdot\left[\int_{a}^{b}|g(x)|^{q} \mathrm{d} x\right]^{\frac{1}{q}} abf(x)g(x)dx[abf(x)pdx]p1[abg(x)qdx]q1
    其中p>1,1p+1q=1p>1, \frac{1}{p}+\frac{1}{q}=1p>1,p1+q1=1

 

证明:设A=∣f(x)∣[∫ab∣f(x)∣pdx]1p,B=∣g(x)∣[∫ab∣g(x)∣qdx]1qA=\frac{|f(x)|}{\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}}}, B=\frac{|g(x)|}{\left[\int_{a}^{b}|g(x)|^{q} \mathrm{d} x\right]^{\frac{1}{q}}}A=[abf(x)pdx]p1f(x),B=[abg(x)qdx]q1g(x),利用Young不等式得:
∣f(x)∣[∫ab∣f(x)∣pdx]1p⋅∣g(x)∣[∫ab∣g(x)∣qdx]1q⩽1p∣f(x)∣p∫ab∣f(x)∣pdx+1q∣g(x)∣q∫ab∣g(x)∣sdx \frac{|f(x)|}{\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}}} \cdot \frac{|g(x)|}{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}} \leqslant \frac{1}{p} \frac{|f(x)|^{p}}{\int_{a}^{b}|f(x)|^{p} \mathrm{d} x}+\frac{1}{q} \frac{|g(x)|^{q}}{\int_{a}^{b}|g(x)|^{s} d x} [abf(x)pdx]p1f(x)[abg(x)qdx]q1g(x)p1abf(x)pdxf(x)p+q1abg(x)sdxg(x)q
于是
∣f(x)∣∣g(x)∣⩽1p∣f(x)∣p[∫ab∣f(x)∣pdx]1−1p[∫ab∣g(x)∣qdx]1q+1q∣g(x)∣q[∫ab∣g(x)∣qdx]1−1q[∫ab∣f(x)∣pdx]1p=1p∣f(x)∣⋅[∫ab∣g(x)∣qdx]1q[∫ab∣f(x)∣pdx]1q+1q∣g(x)∣q[∫ab∣f(x)∣pdx]1p[∫ab∣g(x)∣rdx]1p \begin{aligned}|f(x)||g(x)| \leqslant \frac{1}{p} & \frac{|f(x)|^{p}}{\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{1-\frac{1}{p}}}\left[\int_{a}^{b}|g(x)|^{q} \mathrm{d} x\right]^{\frac{1}{q}}+\\ & \frac{1}{q} \frac{|g(x)|^{q}}{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{1-\frac{1}{q}}}\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}} \\ & =\frac{1}{p}|f(x)| \cdot \frac{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}}{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{q}}}+\frac{1}{q}|g(x)|^{q} \frac{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}}{\left[\int_{a}^{b}|g(x)|^{r} d x\right]^{\frac{1}{p}}} \end{aligned} f(x)g(x)p1[abf(x)pdx]1p1f(x)p[abg(x)qdx]q1+q1[abg(x)qdx]1q1g(x)q[abf(x)pdx]p1=p1f(x)[abf(x)pdx]q1[abg(x)qdx]q1+q1g(x)q[abg(x)rdx]p1[abf(x)pdx]p1
对上式两边在[a,b][a,b][a,b]上关于xxx积分,得:
∫ab∣f(x)g(x)∣dx⩽1p∫ab∣f(x)∣pdx[∫ab∣g(x)∣qdx]1q[∫ab∣f(x)∣pdx]1q+1q∫ab∣g(x)∣qdx[∫ab∣f(x)∣pdx]1p[∫ab∣g(x)∣qdx]−1p=(1p+1q)[∫ab∣f(x)∣pdx]1p⋅[∫ab∣g(x)∣qdx]1q \begin{aligned} \int_{a}^{b}|f(x) g(x)| d x & \leqslant \frac{1}{p} \int_{a}^{b}|f(x)|^{p} d x \frac{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}}{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{q}}}+\frac{1}{q} \int_{a}^{b}|g(x)|^{q} d x \frac{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}}{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{-\frac{1}{p}}} \\ &=\left(\frac{1}{p}+\frac{1}{q}\right)\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}} \cdot\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}} \end{aligned} abf(x)g(x)dxp1abf(x)pdx[abf(x)pdx]q1[abg(x)qdx]q1+q1abg(x)qdx[abg(x)qdx]p1[abf(x)pdx]p1=(p1+q1)[abf(x)pdx]p1[abg(x)qdx]q1
又由∣∫abf(x)⋅g(x)dx∣⩽∫ab∣f(x)g(x)∣dx\left|\int_{a}^{b} f(x) \cdot g(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x) g(x)| \mathrm{d} xabf(x)g(x)dxabf(x)g(x)dx,命题得证。

  1. arctan⁡x⩽x⩽arcsin⁡x(0⩽x⩽1)\arctan x \leqslant x \leqslant \arcsin x(0 \leqslant x \leqslant 1)arctanxxarcsinx(0x1)
Logo

汇聚原天河团队并行计算工程师、中科院计算所专家以及头部AI名企HPC专家,助力解决“卡脖子”问题

更多推荐