考研数学常见的不等式及其证明
几个常用的不等式1.伯努利不等式命题:设h>−1,n∈N+h>-1, n \in \mathbf{N}_{+}h>−1,n∈N+,则成立不等式(1+h)n⩾1+nh(1+h)^{n} \geqslant 1+n h(1+h)n⩾1+nh其中当n>1n>1n>1时成立等号的充分必要条件是h=0h=0h=0证明:由于n=1n=1n=1或h=0h=0h=0时不等式明
几个常用的不等式
1.伯努利不等式
命题:
设
h
>
−
1
,
n
∈
N
+
h>-1, n \in \mathbf{N}_{+}
h>−1,n∈N+,则成立不等式
(
1
+
h
)
n
⩾
1
+
n
h
(1+h)^{n} \geqslant 1+n h
(1+h)n⩾1+nh
其中当
n
>
1
n>1
n>1时成立等号的充分必要条件是
h
=
0
h=0
h=0
证明:由于
n
=
1
n=1
n=1或
h
=
0
h=0
h=0时不等式明显成立(且其中均成立等号),一下只需讨论
n
>
1
n>1
n>1和
h
≠
0
h \neq 0
h=0的情况。
将
(
1
+
h
)
n
−
1
(1+h)^{n}-1
(1+h)n−1做因式分解,就可以得到
(
1
+
h
)
n
−
1
=
h
[
1
+
(
1
+
h
)
+
(
1
+
h
)
2
+
⋯
+
(
1
+
h
)
n
−
1
]
(1+h)^{n}-1=h\left[1+(1+h)+(1+h)^{2}+\cdots+(1+h)^{n-1}\right]
(1+h)n−1=h[1+(1+h)+(1+h)2+⋯+(1+h)n−1]
当
h
>
0
h>0
h>0时,在右边方括号内从第二项起都大于1,因此就有
(
1
+
h
)
n
−
1
>
n
h
(1+h)^{n}-1>n h
(1+h)n−1>nh。
在
−
1
<
h
<
0
-1<h<0
−1<h<0时在上述公式右边方括号中从第二项起都小于1,因此方括号中表达式之和小于
n
n
n,由于
h
<
0
h<0
h<0,因此得到
(
1
+
h
)
n
−
1
>
n
h
(1+h)^{n}-1>n h
(1+h)n−1>nh。
推广:令
h
=
B
/
A
h=B/A
h=B/A,其中
A
>
0
,
A
+
B
>
0
A>0, A+B>0
A>0,A+B>0,则条件
1
+
h
>
0
1+h>0
1+h>0成立,将这个
h
h
h代入伯努利不等式中,就可以得到下一个不等式:
命题:设有
A
>
0
,
A
+
B
>
0
,
n
∈
N
+
A>0, A+B>0, n \in \mathbf{N}_{+}
A>0,A+B>0,n∈N+,则成立不等式
(
A
+
B
)
n
⩾
A
n
+
n
A
n
−
1
B
(A+B)^{n} \geqslant A^{n}+n A^{n-1} B
(A+B)n⩾An+nAn−1B,而且当
n
>
1
n>1
n>1时其中成立等号的充分必要条件是
B
=
0
B=0
B=0。
2.算术平均值-几何平均值不等式
命题:设
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots, a_{n}
a1,a2,⋯,an是
n
n
n个非负实数,则成立不等式:
a
1
+
a
2
+
⋯
+
a
n
n
⩾
a
1
a
2
⋯
a
n
n
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geqslant \sqrt[n]{a_{1} a_{2} \cdots a_{n}}
na1+a2+⋯+an⩾na1a2⋯an
其中等号成立的充分必要条件是
a
1
=
a
2
=
⋯
=
a
n
a_{1}=a_{2}=\cdots=a_{n}
a1=a2=⋯=an。
证1:一开始可以看出,如果在
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots, a_{n}
a1,a2,⋯,an中出现0,则不等式已经成立,又可以看出,这时成立等号的充分必要条件是其中每个数为0,因此下面只需要对
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots, a_{n}
a1,a2,⋯,an为
n
n
n个正数的情况来证明就够了。
应用数学归纳法,在
n
=
1
n=1
n=1时结论是平凡的,在
n
=
2
n=2
n=2时的结论是中学数学已包含的内容,现设
n
=
k
n=k
n=k时不等式已成立,然后讨论
n
=
k
+
1
n=k+1
n=k+1,将
k
+
1
k+1
k+1个正数
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots, a_{n}
a1,a2,⋯,an的算术平均值分解如下:
a
1
+
a
2
+
⋯
+
a
k
+
1
k
+
1
=
a
1
+
a
2
+
⋯
+
a
k
k
+
k
a
k
+
1
−
(
a
1
+
a
2
+
⋯
+
a
k
)
k
(
k
+
1
)
\frac{a_{1}+a_{2}+\cdots+a_{k+1}}{k+1}=\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}+\frac{k a_{k+1}-\left(a_{1}+a_{2}+\cdots+a_{k}\right)}{k(k+1)}
k+1a1+a2+⋯+ak+1=ka1+a2+⋯+ak+k(k+1)kak+1−(a1+a2+⋯+ak)
然后将上式右边的两项分别记为
A
A
A和
B
B
B,这时条件
A
>
0
,
A
+
B
>
0
A>0, A+B>0
A>0,A+B>0满足,因此就可以应用伯努利不等式的推广不等式进行如下计算:
(
a
1
+
a
2
+
⋯
+
a
k
+
1
k
+
1
)
k
+
1
=
(
A
+
B
)
k
+
1
⩾
A
k
+
1
+
(
k
+
1
)
A
k
B
=
A
k
(
A
+
(
k
+
1
)
B
)
=
(
a
1
+
a
2
+
⋯
+
a
k
k
)
k
⋅
a
k
+
1
⩾
a
1
a
2
⋯
a
k
a
k
+
1
\begin{aligned} \left(\frac{a_{1}+a_{2}+\cdots+a_{k+1}}{k+1}\right)^{k+1} &=(A+B)^{k+1} \geqslant A^{k+1}+(k+1) A^{k} B \\ &=A^{k}(A+(k+1) B) \\ &=\left(\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}\right)^{k} \cdot a_{k+1} \\ & \geqslant a_{1} a_{2} \cdots a_{k} a_{k+1} \end{aligned}
(k+1a1+a2+⋯+ak+1)k+1=(A+B)k+1⩾Ak+1+(k+1)AkB=Ak(A+(k+1)B)=(ka1+a2+⋯+ak)k⋅ak+1⩾a1a2⋯akak+1
在不等式中成立等号的条件也可以用数学归纳法得到,在
n
=
1
n=1
n=1时已成立,设在
n
=
k
n=k
n=k时结论为真,则在
n
=
k
+
1
n=k+1
n=k+1时可从上述推导看出等号成立的条件是
k
a
k
+
1
=
a
1
+
a
2
+
⋯
+
a
k
k a_{k+1}=a_{1}+a_{2}+\cdots+a_{k}
kak+1=a1+a2+⋯+ak和
a
1
=
a
2
=
⋯
=
a
k
a_{1}=a_{2}=\cdots=a_{k}
a1=a2=⋯=ak
也即是
a
1
=
a
2
=
⋯
=
a
k
=
a
k
+
1
a_{1}=a_{2}=\cdots=a_{k}=a_{k+1}
a1=a2=⋯=ak=ak+1
证2:采用拉格朗日乘数法,令
a
1
a
2
⋯
a
n
=
a
a_{1} a_{2} \cdots a_{n}=a
a1a2⋯an=a,并做辅助函数
F
=
a
1
+
a
2
+
⋯
+
a
n
+
λ
(
a
1
a
2
⋯
a
n
−
a
)
F=a_{1}+a_{2}+\dots+a_{n}+\lambda\left(a_{1} a_{2} \cdots a_{n}-a\right)
F=a1+a2+⋯+an+λ(a1a2⋯an−a)
令
{
F
a
1
′
=
1
+
λ
a
2
a
3
⋯
a
n
=
0
F
a
2
′
=
1
+
λ
a
1
a
3
⋯
a
n
=
0
⋯
⋯
F
a
n
′
=
1
+
λ
a
1
a
2
⋯
a
n
−
1
=
0
F
λ
′
=
a
1
a
2
⋯
a
n
−
a
=
0
\left\{\begin{array}{l}{F_{a_{1}}^{\prime}=1+\lambda a_{2} a_{3} \cdots a_{n}=0} \\ {F_{a_{2}}^{\prime}=1+\lambda a_{1} a_{3} \cdots a_{n}=0} \\ {\cdots \cdots} \\ {F_{a_{n}}^{\prime}=1+\lambda a_{1} a_{2} \cdots a_{n-1}=0} \\ {F_{\lambda}^{\prime}=a_{1} a_{2} \cdots a_{n}-a=0}\end{array}\right.
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧Fa1′=1+λa2a3⋯an=0Fa2′=1+λa1a3⋯an=0⋯⋯Fan′=1+λa1a2⋯an−1=0Fλ′=a1a2⋯an−a=0
得
a
1
=
a
2
=
⋯
=
a
n
=
a
n
a_{1}=a_{2}=\dots=a_{n}=\sqrt[n]{a}
a1=a2=⋯=an=na
由于
a
1
,
a
2
,
⋯
,
a
n
>
0
a_{1}, a_{2}, \cdots, a_{n}>0
a1,a2,⋯,an>0,所以
a
1
+
a
2
+
⋯
+
a
n
a_{1}+a_{2}+\dots+a_{n}
a1+a2+⋯+an无最大值,其最小值为
(
a
1
+
a
2
+
⋯
+
a
n
)
min
=
n
a
n
\left(a_{1}+a_{2}+\cdots+a_{n}\right)_{\min }=n \sqrt[n]{a}
(a1+a2+⋯+an)min=nna
即
a
1
+
a
2
+
⋯
+
a
n
⩾
n
a
n
=
n
a
1
a
2
⋯
a
n
n
a_{1}+a_{2}+\dots+a_{n} \geqslant n \sqrt[n]{a}=n \sqrt[n]{a_{1} a_{2} \cdots a_{n}}
a1+a2+⋯+an⩾nna=nna1a2⋯an
得证
3.几何平均值-调和平均值不等式
命题:若
a
k
>
0
,
k
=
1
,
2
,
⋯
,
n
a_{k}>0, k=1,2, \cdots, n
ak>0,k=1,2,⋯,n,则有
(
∏
k
=
1
n
a
k
)
1
n
⩾
n
∑
k
=
1
n
1
a
k
\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}} \geqslant \frac{n}{\sum_{k=1}^{n} \frac{1}{a_{k}}}
(k=1∏nak)n1⩾∑k=1nak1n
证明:首先对数函数具有凸性,要证算术平均值-几何平均值不等式:
1
n
∑
k
=
1
n
a
k
≥
∏
k
=
1
n
a
k
\frac{1}{n} \sum_{k=1}^{n} a_{k} \geq \sqrt{\prod_{k=1}^{n} a_{k}}
n1k=1∑nak≥k=1∏nak
两边取对数,即证:
ln
(
1
n
∑
k
=
1
n
a
k
)
≥
1
n
∑
k
=
1
n
ln
a
k
\ln \left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right) \geq \frac{1}{n} \sum_{k=1}^{n} \ln a_{k}
ln(n1k=1∑nak)≥n1k=1∑nlnak
对于几何平均值-调和平均值不等式而言:
∏
k
=
1
n
a
k
n
≥
n
∑
k
=
1
n
1
a
k
\sqrt[n]{\prod_{k=1}^{n} a_{k}} \geq \frac{n}{\sum_{k=1}^{n} \frac{1}{a_{k}}}
nk=1∏nak≥∑k=1nak1n
先取倒数,得:
∏
k
=
1
n
1
a
k
n
≤
1
n
∑
k
=
1
n
1
a
k
\sqrt[n]{\prod_{k=1}^{n} \frac{1}{a_{k}}} \leq \frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{k}}
nk=1∏nak1≤n1k=1∑nak1
再取对数:
1
n
∑
k
=
1
n
ln
1
a
k
≤
ln
(
1
n
∑
k
=
1
n
1
a
k
)
\frac{1}{n} \sum_{k=1}^{n} \ln \frac{1}{a_{k}} \leq \ln \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{k}}\right)
n1k=1∑nlnak1≤ln(n1k=1∑nak1)
证毕。
4.柯西不等式
命题:对实数
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots, a_{n}
a1,a2,⋯,an和
b
1
,
b
2
,
⋯
,
b
n
b_{1}, b_{2}, \cdots, b_{n}
b1,b2,⋯,bn成立
∣
∑
i
=
1
n
a
i
b
i
∣
⩽
∑
i
=
1
n
a
i
2
∑
i
=
1
n
b
i
2
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leqslant \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}
∣∣∣∣∣i=1∑naibi∣∣∣∣∣⩽i=1∑nai2i=1∑nbi2
证明:引入变量
λ
\lambda
λ,写出如下的非负二次三项式
0
⩽
∑
i
=
1
n
(
λ
a
i
−
b
i
)
2
=
λ
2
∑
i
=
1
n
a
i
2
−
2
λ
∑
i
=
1
n
a
i
b
i
+
∑
i
=
1
n
b
i
2
0 \leqslant \sum_{i=1}^{n}\left(\lambda a_{i}-b_{i}\right)^{2}=\lambda^{2} \sum_{i=1}^{n} a_{i}^{2}-2 \lambda \sum_{i=1}^{n} a_{i} b_{i}+\sum_{i=1}^{n} b_{i}^{2}
0⩽i=1∑n(λai−bi)2=λ2i=1∑nai2−2λi=1∑naibi+i=1∑nbi2
如果
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots, a_{n}
a1,a2,⋯,an全为0,可以发现柯西不等式已成立。否则,
λ
2
\lambda^{2}
λ2项的系数不会是0,因此它的判别式非正,这就导致
(
∑
i
=
1
n
a
i
b
i
)
2
⩽
(
∑
i
=
1
n
a
i
2
)
⋅
(
∑
i
=
1
n
b
i
2
)
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)
(i=1∑naibi)2⩽(i=1∑nai2)⋅(i=1∑nbi2)
两边开方,就得到所要求证的不等式。
补充:在柯西不得鞥是中等号成立的充分必要条件是两个序列
{
a
i
}
1
⩽
i
⩽
n
\left\{a_{i}\right\}_{1 \leqslant i \leqslant n}
{ai}1⩽i⩽n和
{
b
i
}
1
⩽
i
⩽
n
\left\{b_{i}\right\}_{1 \leqslant i \leqslant n}
{bi}1⩽i⩽n成比例。
5.其它不等式
- 设 x > 0 , y > 0 , p > 0 , q > 0 , 1 p + 1 q = 1 x>0, y>0, p>0, q>0, \frac{1}{p}+\frac{1}{q}=1 x>0,y>0,p>0,q>0,p1+q1=1,则有 x y ⩽ x p p + y q q x y \leqslant \frac{x^{p}}{p}+\frac{y^{q}}{q} xy⩽pxp+qyq
证明:在
x
y
⩽
x
p
p
+
y
q
q
x y \leqslant \frac{x^{p}}{p}+\frac{y^{q}}{q}
xy⩽pxp+qyq两边取对数,得到
ln
(
x
y
)
⩽
ln
(
x
p
p
+
y
q
q
)
\ln (x y) \leqslant \ln \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right)
ln(xy)⩽ln(pxp+qyq)
由于
x
>
0
x>0
x>0,令
f
(
x
)
=
ln
x
⇒
f
′
′
(
x
)
=
−
1
x
2
<
0
⇒
f
(
x
)
f(x)=\ln x \Rightarrow f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0 \Rightarrow f(x)
f(x)=lnx⇒f′′(x)=−x21<0⇒f(x)的图像是凸的,,由凸凹性定义得:
f
[
λ
x
1
+
(
1
−
λ
)
y
1
]
⩾
λ
f
(
x
1
)
+
(
1
−
λ
)
f
(
y
1
)
f\left[\lambda x_{1}+(1-\lambda) y_{1}\right] \geqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(y_{1}\right)
f[λx1+(1−λ)y1]⩾λf(x1)+(1−λ)f(y1)
在上式中,令
λ
=
1
p
,
x
1
=
x
p
,
y
1
=
y
q
\lambda=\frac{1}{p}, x_{1}=x^{p}, y_{1}=y^{q}
λ=p1,x1=xp,y1=yq,则
1
−
λ
=
1
−
1
p
=
1
q
1-\lambda=1-\frac{1}{p}=\frac{1}{q}
1−λ=1−p1=q1,于是就得到
ln
(
x
p
p
+
y
q
q
)
⩾
1
p
f
(
x
p
)
+
1
q
f
(
y
q
)
=
ln
(
x
y
)
\ln \left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right) \geqslant \frac{1}{p} f\left(x^{p}\right)+\frac{1}{q} f\left(y^{q}\right)=\ln (x y)
ln(pxp+qyq)⩾p1f(xp)+q1f(yq)=ln(xy)
即得:
x
y
⩽
x
ρ
p
+
y
y
q
x y \leqslant \frac{x^{\rho}}{p}+\frac{y^{y}}{q}
xy⩽pxρ+qyy
- 设
f
(
x
)
f(x)
f(x)在
[
a
,
,
b
]
[a,,b]
[a,,b]上
p
p
p次方可积,
g
(
x
)
g(x)
g(x)在
[
a
,
,
b
]
[a,,b]
[a,,b]上
q
q
q次方可积,则
∣ ∫ a b f ( x ) ⋅ g ( x ) d x ∣ ⩽ [ ∫ a b ∣ f ( x ) ∣ p d x ] 1 p ⋅ [ ∫ a b ∣ g ( x ) ∣ q d x ] 1 q \left|\int_{a}^{b} f(x) \cdot g(x) \mathrm{d} x\right| \leqslant\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}} \cdot\left[\int_{a}^{b}|g(x)|^{q} \mathrm{d} x\right]^{\frac{1}{q}} ∣∣∣∣∣∫abf(x)⋅g(x)dx∣∣∣∣∣⩽[∫ab∣f(x)∣pdx]p1⋅[∫ab∣g(x)∣qdx]q1
其中 p > 1 , 1 p + 1 q = 1 p>1, \frac{1}{p}+\frac{1}{q}=1 p>1,p1+q1=1
证明:设
A
=
∣
f
(
x
)
∣
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
p
,
B
=
∣
g
(
x
)
∣
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
q
A=\frac{|f(x)|}{\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}}}, B=\frac{|g(x)|}{\left[\int_{a}^{b}|g(x)|^{q} \mathrm{d} x\right]^{\frac{1}{q}}}
A=[∫ab∣f(x)∣pdx]p1∣f(x)∣,B=[∫ab∣g(x)∣qdx]q1∣g(x)∣,利用Young不等式得:
∣
f
(
x
)
∣
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
p
⋅
∣
g
(
x
)
∣
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
q
⩽
1
p
∣
f
(
x
)
∣
p
∫
a
b
∣
f
(
x
)
∣
p
d
x
+
1
q
∣
g
(
x
)
∣
q
∫
a
b
∣
g
(
x
)
∣
s
d
x
\frac{|f(x)|}{\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}}} \cdot \frac{|g(x)|}{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}} \leqslant \frac{1}{p} \frac{|f(x)|^{p}}{\int_{a}^{b}|f(x)|^{p} \mathrm{d} x}+\frac{1}{q} \frac{|g(x)|^{q}}{\int_{a}^{b}|g(x)|^{s} d x}
[∫ab∣f(x)∣pdx]p1∣f(x)∣⋅[∫ab∣g(x)∣qdx]q1∣g(x)∣⩽p1∫ab∣f(x)∣pdx∣f(x)∣p+q1∫ab∣g(x)∣sdx∣g(x)∣q
于是
∣
f
(
x
)
∣
∣
g
(
x
)
∣
⩽
1
p
∣
f
(
x
)
∣
p
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
−
1
p
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
q
+
1
q
∣
g
(
x
)
∣
q
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
−
1
q
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
p
=
1
p
∣
f
(
x
)
∣
⋅
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
q
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
q
+
1
q
∣
g
(
x
)
∣
q
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
p
[
∫
a
b
∣
g
(
x
)
∣
r
d
x
]
1
p
\begin{aligned}|f(x)||g(x)| \leqslant \frac{1}{p} & \frac{|f(x)|^{p}}{\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{1-\frac{1}{p}}}\left[\int_{a}^{b}|g(x)|^{q} \mathrm{d} x\right]^{\frac{1}{q}}+\\ & \frac{1}{q} \frac{|g(x)|^{q}}{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{1-\frac{1}{q}}}\left[\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right]^{\frac{1}{p}} \\ & =\frac{1}{p}|f(x)| \cdot \frac{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}}{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{q}}}+\frac{1}{q}|g(x)|^{q} \frac{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}}{\left[\int_{a}^{b}|g(x)|^{r} d x\right]^{\frac{1}{p}}} \end{aligned}
∣f(x)∣∣g(x)∣⩽p1[∫ab∣f(x)∣pdx]1−p1∣f(x)∣p[∫ab∣g(x)∣qdx]q1+q1[∫ab∣g(x)∣qdx]1−q1∣g(x)∣q[∫ab∣f(x)∣pdx]p1=p1∣f(x)∣⋅[∫ab∣f(x)∣pdx]q1[∫ab∣g(x)∣qdx]q1+q1∣g(x)∣q[∫ab∣g(x)∣rdx]p1[∫ab∣f(x)∣pdx]p1
对上式两边在
[
a
,
b
]
[a,b]
[a,b]上关于
x
x
x积分,得:
∫
a
b
∣
f
(
x
)
g
(
x
)
∣
d
x
⩽
1
p
∫
a
b
∣
f
(
x
)
∣
p
d
x
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
q
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
q
+
1
q
∫
a
b
∣
g
(
x
)
∣
q
d
x
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
p
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
−
1
p
=
(
1
p
+
1
q
)
[
∫
a
b
∣
f
(
x
)
∣
p
d
x
]
1
p
⋅
[
∫
a
b
∣
g
(
x
)
∣
q
d
x
]
1
q
\begin{aligned} \int_{a}^{b}|f(x) g(x)| d x & \leqslant \frac{1}{p} \int_{a}^{b}|f(x)|^{p} d x \frac{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}}{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{q}}}+\frac{1}{q} \int_{a}^{b}|g(x)|^{q} d x \frac{\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}}{\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{-\frac{1}{p}}} \\ &=\left(\frac{1}{p}+\frac{1}{q}\right)\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}} \cdot\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}} \end{aligned}
∫ab∣f(x)g(x)∣dx⩽p1∫ab∣f(x)∣pdx[∫ab∣f(x)∣pdx]q1[∫ab∣g(x)∣qdx]q1+q1∫ab∣g(x)∣qdx[∫ab∣g(x)∣qdx]−p1[∫ab∣f(x)∣pdx]p1=(p1+q1)[∫ab∣f(x)∣pdx]p1⋅[∫ab∣g(x)∣qdx]q1
又由
∣
∫
a
b
f
(
x
)
⋅
g
(
x
)
d
x
∣
⩽
∫
a
b
∣
f
(
x
)
g
(
x
)
∣
d
x
\left|\int_{a}^{b} f(x) \cdot g(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x) g(x)| \mathrm{d} x
∣∣∣∫abf(x)⋅g(x)dx∣∣∣⩽∫ab∣f(x)g(x)∣dx,命题得证。
- arctan x ⩽ x ⩽ arcsin x ( 0 ⩽ x ⩽ 1 ) \arctan x \leqslant x \leqslant \arcsin x(0 \leqslant x \leqslant 1) arctanx⩽x⩽arcsinx(0⩽x⩽1)
更多推荐
所有评论(0)