hive的引擎mapreduce、tez和spark三者比较
hive的引擎mapreduce、tez和spark三者比较
1、Hive引擎简介
MapReduce
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。
Tez
Tez是Apache开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业
Spark
Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
Tez和Mapreduce区别
核心思想:MapReduce将一个算法抽象成Map和Reduce两个阶段进行处理;Tez将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等依赖DAG:Mapreduce没有DAG一说,Tez将map和reduce阶段拆分成多个阶段,分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业落地磁盘:MapReduce会有多次落地磁盘;Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少。
Tez和Spark区别
使用场景:spark更像是一个通用的计算引擎,提供内存计算,实时流处理,机器学习等多种计算方式,适合迭代计算;tez作为一个框架工具,特定为hive和pig提供批量计算运行模式:spark属于内存计算,支持多种运行模式,可以跑在standalone,yarn上;而tez只能跑在yarn上;虽然spark与yarn兼容,但是spark不适合和其他yarn应用跑在一起资源利用:tez能够及时的释放资源,重用container,节省调度时间,对内存的资源要求率不高; 而spark如果存在迭代计算时,container一直占用资源;
mr引擎在hive 2中将被弃用。官方推荐使用tez或spark等引擎。
选择
tez:使用有向无环图。内存式计算。
spark:可以同时作为批式和流式的处理引擎,减少学习成本。
2、Hive引擎选择
MapReduce: 是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段进行处理,每个阶段都是用键值对(key/value)作为输入和输出,非常适合数据密集型计算。Map/Reduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性地返回它所完成的工作和最新的状态。如果一个节点在设定的时间内没有进行心跳上报,主节点(可以理解为主服务器)就会认为这个节点down掉了,此时就会把分配给这个节点的数据发到别的节点上运算,这样可以保证系统的高可用性和稳定性。因此它是一个很好的计算框架。
TEZ:是基于Hadoop YARN之上的DAG(有向无环图,Directed Acyclic Graph)计算框架。核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等。这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业,从而可以减少Map/Reduce之间的文件存储,同时合理组合其子过程,也可以减少任务的运行时间。
Spark:Hive on Spark总体的设计思路是,尽可能重用Hive逻辑层面的功能;从生成物理计划开始,提供一整套针对Spark的实现,比如 SparkCompiler、SparkTask等,这样Hive的查询就可以作为Spark的任务来执行了
三者比较个人意见:
MR
计算,会对磁盘进行多次的读写操作,这样启动多轮job的代价略有些大,不仅占用资源,更耗费大量的时间 <–相比较–>
TEZ
计算,就会生成一个简洁的DAG作业,算子跑完不退出,下轮继续使用上一轮的算子,这样大大减少磁盘IO操作,从而计算速度更快。 TEZ比MR至少快5倍(约值,反正是快,不必较真0.0) <–相比较–>
Spark
计算,DAG生成,Stage划分,比MR快10倍(约值,反正是快,不必较真0.0)与TEZ相比我选择Spark,一来快,二来奇葩问题比较少
3、三种引擎如何切换引擎?
1)、配置mapreduce计算引擎
set hive.execution.engine=mr;
2)、配置tez计算引擎
set hive.execution.engine=tez;
3)、配置spark计算引擎
set hive.execution.engine=spark;
4、hive on spark配置集群模式
set hive.execution.engine=spark;
set spark.master=yarn-cluster;
set mapreduce.job.queuename=xxx;
5、hive on spark参数调优
xxx
依据集群规模配置,切合理配置
1)、核数调优:yarn.nodemanager.resource.cpu-vcores=xxx
2)、内存调优:yarn.nodemanager.resource.memory-mb=xxx*1024
3)、executor调优:spark.executor.cores=xxx; spark.executor.memory=xxx;spark.executor.instances;
4)、driver调优(作用不大):spark.driver.cores=xxx;spark.driver.memory=xxx;
5)、并行度调优:保证核数是task数的2~3倍或以上,重复利用资源
https://blog.csdn.net/L13763338360/article/details/106912743?
由于FI各组件没有包括tez, 如想在在FI集群中使用TEZ,可以用以下方法部署TEZ;
更多推荐
所有评论(0)