前言

最近有朋友说,想转行ai赛道,做大模型之类的工作,不知道有哪些岗位。今天就来聊聊,AI大模型有哪些方向,新人怎么转行大模型赛道,让大家少走弯路,早日在AI领域如鱼得水!

其实,在招聘网站上搜搜 “大模型”,看看那些招聘要求,就能大概了解大模型工程师都有哪些方向了。主要分为下面这四类:

  • 数据治理方向:大模型数据工程师,主要负责爬虫、数据清洗、ETL、Data Engine、Pipeline 这些工作。简单说,就是要把数据整理得妥妥当当,让模型能 “吃” 得好。

  • 平台搭建方向:大模型平台工程师,负责分布式训练、大模型集群以及工程基建等。他们就像是大模型的 “建筑工人”,打造出能让模型高效运行的平台。

  • 模型算法方向:大模型算法工程师,主要涉及搜、广、推、对话机器人、AIGC 这些领域。听起来是不是超酷,一听能做出很厉害的产品!

  • 部署落地方向:大模型部署工程师,负责推理加速、跨平台、端智能、嵌入式这些工作。他们要确保模型能顺利在各种设备上运行起来。

下面分别对这四个方向的工作内容进行展开。

1、数据治理 —— 被轻视的宝藏领域

很多人可能觉得自己学了好多算法知识,再去做数据工作有点大材小用了。其实不然!对于很多转行大模型的同学来说,做数据可是更容易上岸的途径呢!

现在国外的大模型技术比国内领先不少,虽然国内有很多 “大模型”,但真正厉害的没几个。为啥呢?除了一些技术没突破,数据和工程技巧也很关键。

就拿数据来说,通用大模型训练的数据来源、采集、质量把控、有毒信息过滤、语言筛选与比例、去重和规范化处理,还有评测集构建,这些都是技术活,也是体力活。

在垂直领域,像金融、电商、法律、车企这些,数据构建更难了。业务数据从哪来?数据不够怎么办?怎么构建高质量微调数据?要是能把这些问题解决好,模型就成功一大半啦!所以现在有经验又有能力的数据工程师是比较稀缺的。

2、平台搭建——保障高性能计算

要是你以前是做工程的,或者对工程感兴趣,那大模型平台工程师这个方向很适合你。

这个方向其实就是为大模型业务服务的,打造大模型的基础设施,让模型训练得更好、跑得更快,有分布式计算、并行计算,总之就是保障高性能计算。

具体都做些啥呢?

  • 硬件层面,要搞大模型训练集群,像 GPU 集群、CPU/GPU 混部集群,得管理好几百上千张卡,还要关注它们的利用率和健康状况。中小公司通常开发和运维都得干。

  • 平台层面,要做 LLMOps,也就是 pipeline,把数据 IO、模型训练、预测、上线、监控都整合起来,跟着业务团队走,造些好用的工具,给业务团队省时间。

3、模型算法——传说中的算法工程师

好多小伙伴一看到大模型算法岗,可能立马就被吸引了,觉得能做出超厉害的产品,站在行业前沿。

但是,在 AI 这行,模型算法应用是很需要业务经验的。如果你本来就是做算法相关的,比如 NLP、语音助手或者对话机器人,那继续做这个方向的大模型算法工程师是合适的。

但如果你是 CS 方向的实习生、应届毕业生,或者其他 IT 行业转过来的,这不一定是最好的选择。

别以为大模型算法工程师就是调调模型、改改超参、做做预训练和 finetune 这些简单活儿。实际上,一个团队里干这些核心算法优化的没几个人,大部分新人进去都是先干些配环境、搭链路、清洗和分析数据、调研、写函数工具这些基础工作。

等这些干熟练了,才有可能跑些模型实验,表现好的同学才有机会接触线上业务。有些同学干了好几年,还在做些边角料的活儿,根本接触不到核心业务呢!

所以刚入行的小伙伴,如果学历背景好,可以去大公司实习争取转正;背景一般的话,去中小公司积累业务经验也是不错的。

4、部署落地——实现AI价值最后一公里

大模型部署主要有两个方向:云端部署和端侧部署

  • 云端部署,可以做推理加速平台,给特定模型做定制化加速,像 Qwen - 7b 的加速,也可以做大模型推理引擎,在高并发用户场景下,保证用户体验的同时优化延迟和吞吐量。

  • 端侧部署,就是要在消费级 GPU/NPU 和边端设备上把模型部署好,还要让领域大模型小型化,实现工程落地。

这个岗位对工程、系统和硬件方面的能力都有要求,虽然现在有各种推理框架降低了点难度,但还是挺有挑战性的,不太建议新人直接做,可以先从平台方向入手,再慢慢转到部署方向。

​最后

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。

我整理出这套 AI 大模型突围资料包:

  • ✅AI大模型学习路线图
  • ✅Agent行业报告
  • ✅100集大模型视频教程
  • ✅大模型书籍PDF
  • ✅DeepSeek教程
  • ✅AI产品经理入门资料

如果你也想通过学大模型技术去帮助自己升职和加薪,可以扫描下方链接👇👇
​​
在这里插入图片描述

为什么说现在普通人就业/升职加薪的首选是AI大模型?

人工智能技术的爆发式增长,正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议,到全国两会关于AI产业发展的政策聚焦,再到招聘会上排起的长队,AI的热度已从技术领域渗透到就业市场的每一个角落。

img
智联招聘的最新数据给出了最直观的印证:2025年2月,AI领域求职人数同比增幅突破200% ,远超其他行业平均水平;整个人工智能行业的求职增速达到33.4%,位居各行业榜首,其中人工智能工程师岗位的求职热度更是飙升69.6%。

AI产业的快速扩张,也让人才供需矛盾愈发突出。麦肯锡报告明确预测,到2030年中国AI专业人才需求将达600万人,人才缺口可能高达400万人,这一缺口不仅存在于核心技术领域,更蔓延至产业应用的各个环节。

在这里插入图片描述

​​
在这里插入图片描述

资料包有什么?

①从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

② AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

③学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

④各大厂大模型面试题目详解

在这里插入图片描述
⑤ 这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频教程由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

​​​​在这里插入图片描述
在这里插入图片描述

如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

更多推荐