从零读懂Transformer!PyTorch手把手实现+完整训练代码,大模型入门必看,建议收藏!
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
一、Transformer概述
Transformer是由谷歌在17年提出并应用于神经机器翻译的seq2seq模型,其结构完全通过自注意力机制完成对源语言序列和目标语言序列的全局依赖建模。
Transformer由编码器和解码器构成。下图展示了它的结构,其左侧和右侧分别对应着编码器(Encoder)和解码器(Decoder)结构,它们均由若干个基本的 Transformer Encoder/Decoder Block(N×表示N次堆叠)。

二、Transformer结构与实现
2.1、嵌入表示层
对于输入文本序列,首先通过**输入嵌入层(Input Embedding)**将每个单词转换为其相对应的向量表示。通常直接对每个单词创建一个向量表示。
注意:在翻译问题中,有两个词汇表,分别对应源语言和目标语言。
由于Transfomer中没有任何信息能表示单词间的相对位置关系,故需在词嵌入中加入位置编码(Positional Encoding)。
具体来说,序列中每一个单词所在的位置都对应一个向量。这一向量会与单词表示对应相加并送入到后续模块中做进一步处理。在训练的过程当中,模型会自动地学习到如何利用这部分位置信息。
2.1.1、词元嵌入层
初始化词汇表(对原始词汇表用**BPE(Byte Pair Encoding)**进行压缩分词,得到最终的词元list)
self.embedding = nn.Embedding(vocab_size, num_hiddens)
2.1.2、位置编码
为了使用序列的顺序信息,通过在输入表示中添加**位置编码(positional encoding)**来注入绝对的或相对的位置信息。
位置编码可以通过学习得到也可以直接固定得到。接下将介绍基于正弦函数和余弦函数的固定位置编码。
假设输入X∈Rn×dX∈Rn×d表示包含一个序列中nn个词元的dd维嵌入表示。 位置编码使用相同形状的位置嵌入矩阵P∈Rn×dP∈Rn×d 输出 X+PX+P, 矩阵第行pospos、第列2i2i和列上2i+12i+1的元素为:
p(pos,2i)=sin(pos100002i/d),p(pos,2i+1)=cos(pos100002i/d).p(pos,2i)=sin(pos100002i/d),p(pos,2i+1)=cos(pos100002i/d).
其中,pospos表示单词所在的位置,2i2i和2i+12i+1表示位置编码向量中的对应维度,dd 则对应位置编码的总维度。

通过上面这种方式计算位置编码有这样几个好处:
- 首先,正余弦函数的范围是在 [-1,+1],导出的位置编码与原词嵌入相加不会使得结果偏离过远而破坏原有单词的语义信息。
- 其次,依据三角函数的基本性质,可以得知第pos+kpos+k个位置的编码是第pospos个位置的编码的线性组合,这就意味着位置编码中蕴含着单词之间的距离信息。
class PositionalEncoding(nn.Module):
"""位置编码"""
def __init__(self, num_hiddens, dropout, max_len=1000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(dropout)
# 创建一个足够长的P
self.P = torch.zeros((1, max_len, num_hiddens))
X = torch.arange(max_len, dtype=torch.float32).reshape(
-1, 1) / torch.pow(10000, torch.arange(
0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)
self.P[:, :, 0::2] = torch.sin(X)
self.P[:, :, 1::2] = torch.cos(X)
def forward(self, X):
X = X + self.P[:, :X.shape[1], :].to(X.device)
return self.dropout(X)
2.1、多头自注意力(Multi-Head-self-Attention)

2.2.1、自注意力机制
1) 缩放点积注意力(scaled dot-product attention)
假设有查询向量(query) q∈R1×dq∈R1×d 和 键向量(key) k∈R1×dk∈R1×d,查询向量和键向量点积的结果即为注意力得分。
a(q,k)=qk⊤a(q,k)=qk⊤
将缩放点积注意力推广到批量矩阵形势,其公式为:
Z=softmax(QK⊤√d)V∈Rn×dZ=softmax(QK⊤d)V∈Rn×d
其中,Q∈Rm×dQ∈Rm×d、K∈Rn×dK∈Rn×d、V∈Rn×dV∈Rn×d。
考虑到在dd过大时,点积值较大会使得后续Softmax操作溢出导致梯度爆炸,不利于模型优化。故将注意力得分除以√dd进行缩放。
注:当m=1m=1时,就是传统的注意力机制(1个qq, 多个kk,vv)。
import math
import torch
from torch import nn
class DotProductAttention(nn.Module):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values)
为批量处理数据或在自回归处理时避免信息泄露等情况,在Token序列中填充[mask]Token,从而使一些值不纳入注意力汇聚计算。这里可指定一个有效序列长度(即Token个数), 以便在计算softmax时过滤掉超出指定范围的位置。
注:该缩放点积注意力的实现使用了dropout进行正则化。
masked_softmax函数实现了掩码softmaxsoftmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为00(将掩码位置的注意力系数变为无穷小−inf−inf,SoftmaxSoftmax后的值为一个接近00的值)
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
value=-1e9)
return nn.functional.softmax(X.reshape(shape), dim=-1)
def sequence_mask(X, valid_len, value=0):
"""在序列中屏蔽不相关的项"""
maxlen = X.size(1)
mask = torch.arange((maxlen), dtype=torch.float32,
device=X.device)[None, :] < valid_len[:, None]
X[~mask] = value
return X
2)自注意力
当n=mn=m时,且QQ、KK、VV均源于输入X∈Rn×dX∈Rn×d经过不同的线性变换时,缩放点积注意力即推广为自注意力。
这时,每个查询都会关注所有的键值对并生成一个注意力输出。 由于查询、键和值来自同一组输,故称为Self-Attention。
2.2.2、多头自注意力

class MultiHeadAttention(nn.Module):
"""多头注意力"""
def __init__(self, key_size, query_size, value_size, num_hiddens,
num_heads, dropout, bias=False, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.attention = DotProductAttention(dropout)
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
def forward(self, queries, keys, values, valid_lens):
# queries,keys,values的形状:
# (batch_size,查询或者“键-值”对的个数,num_hiddens)
# valid_lens 的形状:
# (batch_size,)或(batch_size,查询的个数)
# 经过变换后,输出的queries,keys,values 的形状:
# (batch_size*num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
queries = transpose_qkv(self.W_q(queries), self.num_heads)
keys = transpose_qkv(self.W_k(keys), self.num_heads)
values = transpose_qkv(self.W_v(values), self.num_heads)
if valid_lens is not None:
# 在轴0,将第一项(标量或者矢量)复制num_heads次,
# 然后如此复制第二项,然后诸如此类。
valid_lens = torch.repeat_interleave(
valid_lens, repeats=self.num_heads, dim=0)
# output的形状:(batch_size*num_heads,查询的个数,
# num_hiddens/num_heads)
output = self.attention(queries, keys, values, valid_lens)
# output_concat的形状:(batch_size,查询的个数,num_hiddens)
output_concat = transpose_output(output, self.num_heads)
return self.W_o(output_concat)
为了使多个头的计算并行,上面的**MultiHeadAttention类**将使用下面定义的两个转置函数。具体来说,transpose_output函数反转了transpose_qkv函数的操作。
```python
def transpose_qkv(X, num_heads):
"""为了多注意力头的并行计算而变换形状"""
# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
# num_hiddens/num_heads)
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
X = X.transpose(0, 2, 1, 3)
# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
return X.reshape(-1, X.shape[2], X.shape[3])
def transpose_output(X, num_heads):
"""逆转transpose_qkv函数的操作"""
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
X = X.transpose(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)
num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens, num_hiddens, num_heads, 0.5)
print(attention)
batch_size, num_queries, valid_lens = 2, 4, torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens))
attention(X, X, X, valid_lens).shape
2.3、前馈网络
位置感知的前馈网络对序列中的所有位置的表示进行变换时使用的是同一个2层全连接网络,故称其为position-wise的前馈网络。
FFN(x)=Relu(xW1+b1)W2+b2FFN(x)=Relu(xW1+b1)W2+b2
在下面的实现中,输入X的形状(批量大小,时间步数或序列长度,隐单元数或特征维度)将被一个两层的感知机转换成形状为(批量大小,时间步数,ffn_num_outputs)的输出张量。
class PositionWiseFFN(nn.Module):
"""基于位置的前馈网络"""
def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
**kwargs):
super(PositionWiseFFN, self).__init__(**kwargs)
self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
self.relu = nn.ReLU()
self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
def forward(self, X):
return self.dense2(self.relu(self.dense1(X)))
2.4、残差连接和层规一化
add&norm组件是由残差连接和紧随其后的层规一化组成的,它被用来进一步提升训练的稳定性。
1)残差连接
残差连接引入输入直接到输出的通路,便于梯度回传从而缓解在优化过程中由于网络过深引起的梯度消失问题。
xl+1=f(xl)+xlxl+1=f(xl)+xl
2)层归一化
**层归一化(Layer Normalization)**是基于特征维度进行规范化,将数据进行标准化(乘以缩放系数、加上平移系数,保留其非线性能力。
LN(x)=α(x−μσ)+βLN(x)=α(x−μσ)+β
层归一化可以有效地缓解优化过程中潜在的不稳定、收敛速度慢等问题。
以下代码对比不同维度的层规范化和批量规范化的效果。
ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))
层归一化实现
class NormLayer(nn.Module):
def __init__(self, d_model, eps = 1e-6):
super().__init__()
self.size = d_model
# 层归一化包含两个可以学习的参数
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
/ (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
使用残差连接和层规一化来实现AddNorm类
class AddNorm(nn.Module):
"""残差连接后进行层规范化"""
def __init__(self, normalized_shape, dropout, **kwargs):
super(AddNorm, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
self.ln = nn.LayerNorm(normalized_shape)
def forward(self, X, Y):
return self.ln(self.dropout(Y) + X)
2.5、编码器
现在可以基于编码器的基础组件实现编码器的一个层。
下面的EncoderBlock类包含两个子层:多头自注意力和基于位置的前馈网络,这两个子层都使用了残差连接和紧随的层规一化。
class EncoderBlock(nn.Module):
"""Transformer编码器块"""
def __init__(self, key_size, query_size, value_size, num_hiddens,
norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
dropout, use_bias=False, **kwargs):
super(EncoderBlock, self).__init__(**kwargs)
self.attention = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout,
use_bias)
self.addnorm1 = AddNorm(norm_shape, dropout)
self.ffn = PositionWiseFFN(
ffn_num_input, ffn_num_hiddens, num_hiddens)
self.addnorm2 = AddNorm(norm_shape, dropout)
def forward(self, X, valid_lens):
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
return self.addnorm2(Y, self.ffn(Y))
下面的Transformer编码器中,堆叠了num_layers个EncoderBlock类的实例。
由于这里使用的是值范围在-1和1之间的固定位置编码,因此通过学习得到的输入的嵌入表示的值需要先乘以嵌入维度的平方根进行重新缩放,然后再与位置编码相加。
class TransformerEncoder(Encoder):
"""Transformer编码器"""
def __init__(self, vocab_size, key_size, query_size, value_size,
num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
num_heads, num_layers, dropout, use_bias=False, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.num_hiddens = num_hiddens
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for i in range(num_layers):
self.blks.add_module("block"+str(i),
EncoderBlock(key_size, query_size, value_size, num_hiddens,
norm_shape, ffn_num_input, ffn_num_hiddens,
num_heads, dropout, use_bias))
def forward(self, X, valid_lens, *args):
# 因为位置编码值在-1和1之间,
# 因此嵌入值乘以嵌入维度的平方根进行缩放,
# 然后再与位置编码相加。
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
self.attention_weights = [None] * len(self.blks)
for i, blk in enumerate(self.blks):
X = blk(X, valid_lens)
self.attention_weights[
i] = blk.attention.attention.attention_weights
return X
2.6、解码器
1) 掩码多头注意力
解码器的每个Transformer块的第一个自注意力子层额外增加了注意力掩码,对应图中的**掩码多头注意力(Masked Multi-Head Attention)**部分。
因为在翻译的过程中,编码器用于编码已知的源语言序列的信息,因而它只需要考虑如何融合上下文语义信息即可。而解码端则负责生成目标语言序列,这一自回归的过程意味着,在生成每一个单词时,仅有当前单词之前的目标语言序列是可观测的。
增加的Mask是用来避免模型在训练阶段直接看到后续的文本序列(信息泄露)进而无法得到有效地训练。
2) 交叉注意力
解码器端还增加了一个多头注意力(Multi-Head Attention)模块,使用交叉注意力(Cross-attention)方法,同时接收来自编码器端的输出以及当前 Transformer 块的前一个掩码注意力层的输出。

Key和Value是使用编码器的输出进行投影的,Query是通过解码器前一层的输出进行投影所得。其Insight在于,为了在翻译的过程当中,生成合理的目标语言序列需要观测待翻译的源语言序列是什么。
class DecoderBlock(nn.Module):
"""解码器中第i个块"""
def __init__(self, key_size, query_size, value_size, num_hiddens,
norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
dropout, i, **kwargs):
super(DecoderBlock, self).__init__(**kwargs)
self.i = i
self.attention1 = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout)
self.addnorm1 = AddNorm(norm_shape, dropout)
self.attention2 = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout)
self.addnorm2 = AddNorm(norm_shape, dropout)
self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
num_hiddens)
self.addnorm3 = AddNorm(norm_shape, dropout)
def forward(self, X, state):
enc_outputs, enc_valid_lens = state[0], state[1]
# 训练阶段,输出序列的所有词元都在同一时间处理,
# 因此state[2][self.i]初始化为None。
# 预测阶段,输出序列是通过词元一个接着一个解码的,
# 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
if state[2][self.i] is None:
key_values = X
else:
key_values = torch.cat((state[2][self.i], X), axis=1)
state[2][self.i] = key_values
if self.training:
batch_size, num_steps, _ = X.shape
# dec_valid_lens的开头:(batch_size,num_steps),
# 其中每一行是[1,2,...,num_steps]
dec_valid_lens = torch.arange(
1, num_steps + 1, device=X.device).repeat(batch_size, 1)
else:
dec_valid_lens = None
# 自注意力
X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
Y = self.addnorm1(X, X2)
# 编码器-解码器注意力。
# enc_outputs的开头:(batch_size,num_steps,num_hiddens)
Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
Z = self.addnorm2(Y, Y2)
return self.addnorm3(Z, self.ffn(Z)), state
基于上述的编码器和解码器结构,待翻译的源语言文本,首先经过编码器端的每个Transformer块对其上下文语义的层层抽象,最终输出每一个源语言单词上下文相关的表示。
解码器端以自回归的方式生成目标语言文本,即在每个时间步tt,根据编码器端输出的源语言文本表示,以及前 t−1t−1 个时刻生成的目标语言文本,生成当前时刻的目标语言单词。
解码器端以自回归的方式生成目标语言文本,即在每个时间步tt,根据编码器端输出的源语言文本表示K和V,以及前t−1t−1 个时刻生成的目标语言文本(Q),做一个交叉注意力(需要对注意力得分进行mask, 时间步tt只能看到时间步t及以前的信息),然后取时间步t及以前的信息),然后取时间步t
的token的解码器embedding,去做预测,生成当前时间步t$的目标语言token。
class Decoder(nn.Module):
"""The base decoder interface for the encoder--decoder architecture.
Defined in :numref:`sec_encoder-decoder`"""
def __init__(self):
super().__init__()
# Later there can be additional arguments (e.g., length excluding padding)
def init_state(self, enc_all_outputs, *args):
raise NotImplementedError
def forward(self, X, state):
raise NotImplementedError
class AttentionDecoder(Decoder):
"""The base attention-based decoder interface.
Defined in :numref:`sec_seq2seq_attention`"""
def __init__(self):
super().__init__()
@property
def attention_weights(self):
raise NotImplementedError
解码器实现
class TransformerDecoder(AttentionDecoder):
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens, num_heads,
num_blks, dropout):
super().__init__()
self.num_hiddens = num_hiddens
self.num_blks = num_blks
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for i in range(num_blks):
self.blks.add_module("block"+str(i), TransformerDecoderBlock(
num_hiddens, ffn_num_hiddens, num_heads, dropout, i))
self.dense = nn.LazyLinear(vocab_size)
def init_state(self, enc_outputs, enc_valid_lens):
return [enc_outputs, enc_valid_lens, [None] * self.num_blks]
def forward(self, X, state):
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
for i, blk in enumerate(self.blks):
X, state = blk(X, state)
# Decoder self-attention weights
self._attention_weights[0][
i] = blk.attention1.attention.attention_weights
# Encoder-decoder attention weights
self._attention_weights[1][
i] = blk.attention2.attention.attention_weights
return self.dense(X), state
@property
def attention_weights(self):
return self._attention_weights
2.7、Transformer
class EncoderDecoder(nn.Module):
"""编码器-解码器架构的基类"""
def __init__(self, encoder, decoder, **kwargs):
super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)
三、Transformer训练
损失
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
"""带遮蔽的softmax交叉熵损失函数"""
# pred的形状:(batch_size,num_steps,vocab_size)
# label的形状:(batch_size,num_steps)
# valid_len的形状:(batch_size,)
def forward(self, pred, label, valid_len):
weights = torch.ones_like(label)
weights = sequence_mask(weights, valid_len)
self.reduction='none'
unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(
pred.permute(0, 2, 1), label)
weighted_loss = (unweighted_loss * weights).mean(dim=1)
return weighted_loss
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):
"""训练序列到序列模型"""
def xavier_init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
if type(m) == nn.GRU:
for param in m._flat_weights_names:
if "weight" in param:
nn.init.xavier_uniform_(m._parameters[param])
net.apply(xavier_init_weights)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
loss = MaskedSoftmaxCELoss()
net.train()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[10, num_epochs])
for epoch in range(num_epochs):
timer = d2l.Timer()
metric = d2l.Accumulator(2) # 训练损失总和,词元数量
for batch in data_iter:
optimizer.zero_grad()
X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch]
bos = torch.tensor([tgt_vocab['<bos>']] * Y.shape[0],
device=device).reshape(-1, 1)
dec_input = torch.cat([bos, Y[:, :-1]], 1) # 强制教学
Y_hat, _ = net(X, dec_input, X_valid_len)
l = loss(Y_hat, Y, Y_valid_len)
l.sum().backward() # 损失函数的标量进行“反向传播”
d2l.grad_clipping(net, 1)
num_tokens = Y_valid_len.sum()
optimizer.step()
with torch.no_grad():
metric.add(l.sum(), num_tokens)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, (metric[0] / metric[1],))
print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
f'tokens/sec on {str(device)}')
训练语料为句子对
import torch
from torch import nn
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_hiddens, num_heads = 64, 4
train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = TransformerEncoder(
len(src_vocab), num_hiddens, ffn_num_hiddens, num_heads, num_layers,
dropout)
decoder = TransformerDecoder(
len(tgt_vocab), num_hiddens, ffn_num_hiddens, num_heads, num_layers,
dropout)
net = EncoderDecoder(encoder, decoder)
train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
# Test
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
translation, dec_attention_weight_seq = d2l.predict_seq2seq(
net, eng, src_vocab, tgt_vocab, num_steps, device, True)
print(f'{eng} => {translation}, ',
f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容

-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。

vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
更多推荐


所有评论(0)