在人工智能应用的开发中,我们常常依赖于强大的大语言模型(LLMs)来构建处理各种任务的AI Agent。然而,当任务变得复杂、多维度、超长上下文或需要多方协作时,单一的Agent往往显得力不从心。这时,多智能体系统(Multi-Agent System, MAS) 的设计范式便展现出其独特的优势。

多智能体系统并非简单地将多个Agent堆砌在一起,而是一种将复杂问题分解、并通过多个拥有特定职能的智能体协作来解决的系统架构。我们从多智能体框架的适用场景切入、通过一个具体案例解析其工作原理,并介绍几种主流的设计Multi-Agent框架。

一、何时采用 Multi-Agent 框架

从业务场景切入

采用多智能体框架来设计系统并非普适的,它主要适用于以下几种场景:

1.1 问题具有分布式或解耦特性

当一个复杂任务可以被自然地分解为多个相对独立的子任务时,多智能体框架是理想选择。每个智能体即Agent可以专注于一个子任务,从而简化了整体系统的设计和管理。我们假设一个医疗辅助诊断系统(如图所示) 就是一个例子。试想未来面对一位重症监护室的病人,系统中的不同智能体分别扮演不同的医疗专家角色:

  1. 诊断智能体 (Diagnostic Agents):实时分析心率、血压等生命体征和检验报告。
  2. 病史检索智能体 (History Retrieval Agent):快速从电子病历(EHR)中提取患者的过往病史、过敏记录等关键信息。
  3. 治疗方案规划智能体 (Treatment Planning Agent):基于前两者的信息,并结合最新的临床指南,提出治疗建议。
  4. 最后,由一个编排器 (Orchestrator) 整合所有信息,突出潜在的矛盾点(比如,某个推荐药物与患者的过敏史冲突),呈现给真人医生进行最终决策。

论文:《AI Agents vs. Agentic AI: A ConceptualTaxonomy, Applications and Challenges》

1.2 需要处理多样化或异构的任务

如果系统需要处理多种不同类型、需要不同技能的任务,多智能体系统能够通过角色分工来有效管理这种异构性。每个智能体被赋予独特的角色(提示词+知识库)和能力(工具),不同的智能体可以扮演“决策者”、“执行者”、“观察者”等角色。

1.3 追求系统的鲁棒性和可扩展性

多智能体系统通常比单智能体系统更具鲁棒性。即使某个智能体出现故障,其他智能体仍能继续工作,或者通过重新分配任务来保证整体系统的稳定性。此外,系统的扩展性也更强,可以根据需求轻松添加新的智能体来处理新的任务。

1.4 任务涉及多方博弈与协商

当任务需要多个参与者,且每个参与者都有自己的目标和利益时,多智能体框架非常适合用来模拟和解决这类博弈问题。智能体之间可以进行协商、竞争或协作,以实现各自或共同的目标。

上图示例:基于大语言模型(LLM)的多智能体协作系统的问答应用。在第一个协作通道中,两个 Agent通过轮流辩论策略,针对用户输入展开对抗式协作。在第二个通道中,反对代理(Oppose Agent)与研究代理(Research Agents)协同合作,利用研究代理提供的信息,并最终向用户给出回答。

二、案例解析与流程拆解

开发一个 Multi-agent 新闻生成器

我们当下仅探讨Multi-agent解决问题的流程和思路,通过实践案例,展示多智能体系统如何协同工作。这个Multi-agent 系统将新闻生成的复杂任务分解为两个核心智能体的协作:

  • 研究分析师(Research Analyst)
  • 内容撰稿人(Content Writer)

系统工作流程:

任务分解:用户输入一个新闻主题,例如“AI Agents的最新进展”。系统总控将任务分解为“研究”和“写作”两个子任务。

  1. 研究阶段:研究分析师智能体被激活。它的核心职责是利用外部工具(如搜索引擎)进行网络信息搜集、筛选和总结。它需要具备ReAct (Reasoning and Acting)等模式,能够自主决定搜索什么、如何分析结果。它的输出是一份结构化的、事实准确的“研究报告”,而不是最终文章。
  2. 写作阶段:内容撰稿人智能体接收到研究分析师提供的“研究报告”。它的职责是基于这份报告,以新闻报道的文体风格进行创作。它不需要再次进行信息搜集,而是专注于内容的组织和表达。
  3. 任务完成:最终由内容撰稿人输出的新闻报道被提交给用户。

架构优势分析:

  1. 关注点分离 (Separation of Concerns):每个智能体职责单一,极大地降低了单个智能体的设计复杂性。研究员不必懂写作,写作者不必懂搜索。
  2. 可追溯性与可调试性 (Traceability & Debuggability):如果最终稿件出现事实错误,可以直接追溯到研究分析师的“事实摘要”环节;如果文章结构或文笔不佳,则问题出在内容策略师。这种清晰的责任链条让系统优化变得极为高效。
  3. 质量提升 (Quality Improvement):专业分工确保了每个环节都由“专家”处理,最终产出的质量远高于单个通用智能体。

三、主流 Multi-agent 设计框架与模式

从业务场景出发,来挑选设计框架

多智能体系统的设计模式多种多样,每种模式都适用于不同的问题场景。以下是几种常见的设计框架:

3.1 Agents as Tools

Agents as Tools 模式将智能体本身视为一个高级工具,供另一个主智能体或系统使用。主智能体负责核心逻辑和任务分解,而其他智能体则作为其“外部函数调用(Function Calling)”来完成特定子任务。这种模式使得系统可以灵活地调用各种专业智能体,而无需担心它们的内部实现细节。

3.2 Swarm

Swarm (蜂群) 模式指的是大量同质化或异质化的智能体,通过遵循简单的局部规则,涌现出复杂的全局行为。这种模式没有中央控制者,每个智能体只与周围的智能体进行有限的交互。它适用于需要高度并行化和去中心化的任务,例如机器人编队或交通流量管理。

3.3 Graph

Graph (图) 模式将多智能体系统抽象为一个有向图。图中的每个节点代表一个智能体或一个任务状态,每条边代表任务的传递。这种模式,例如LangGraph,通过明确定义任务流向,使得系统逻辑清晰、可控。它适用于需要复杂决策流或有明确依赖关系的任务。

3.4 Workflow

Workflow (工作流) 模式与图模式类似,但更强调任务的顺序性和自动化。它将一个复杂任务分解为一系列顺序执行的步骤,每个步骤由一个特定的智能体来完成。这种模式适用于需要高度自动化和可重复性的任务,如数据处理流水线或自动化报告生成。

Multi-Agent多智能体系统是AI从单点突破走向系统性解决复杂问题的重要技术范式。它通过角色分工、协同合作和精巧的框架设计,有效解决了单智能体在处理复杂、多维任务时的局限性。从新闻生成器这样的具体应用案例到Agents as Tools、Swarm、Graph和Workflow等抽象设计框架,我们看到多智能体技术正在快速发展,并有望在未来的自动化、机器人和复杂系统管理等领域发挥关键作用。理解并掌握这些设计模式,是构建下一代AI应用的关键。

四、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

在这里插入图片描述

01.大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

02.如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

更多推荐