Android中的任何一个布局、任何一个控件其实都是直接或间接继承自View实现的,当然也包括我们在平时开发中所写的各种炫酷的自定义控件了,所以学习View的工作原理对于我们来说显得格外重要,本篇博客,我们将一起深入学习Android中View的工作原理。

ViewRoot和DecorView

1.ViewRoot对应于ViewRootImpl类,是连接WindowManager和DecorView的纽带,View的三大流程均是通过ViewRoot来完成的。在ActivityThread中,当Activity对象被创建完毕后,会将DecorView添加到Window中,同时会创建ViewRootImpl对象,并将ViewRootImpl对象和DecorView建立关联。

2.View的绘制流程从ViewRoot的performTraversals开始,经过measure、layout和draw三个过程才可以把一个View绘制出来,其中measure用来测量View的宽高,layout用来确定View在父容器中的放置位置,而draw则负责将View绘制到屏幕上。

3.performTraversals会依次调用performMeasure、performLayout和performDraw三个方法,这三个方法分别完成顶级View的measure、layout和draw这三大流程。其中performMeasure中会调用measure方法,在measure方法中又会调用onMeasure方法,在onMeasure方法中则会对所有子元素进行measure过程,这样就完成了一次measure过程;子元素会重复父容器的measure过程,如此反复完成了整个View数的遍历。

这里写图片描述

这里写图片描述

measure过程决定了View的宽/高,完成后可通过getMeasuredWidth/getMeasureHeight方法来获取View测量后的宽/高。Layout过程决定了View的四个顶点的坐标和实际View的宽高,完成后可通过getTop、getBotton、getLeft和getRight拿到View的四个定点坐标。Draw过程决定了View的显示,完成后View的内容才能呈现到屏幕上。

DecorView作为顶级View,一般情况下它内部包含了一个竖直方向的LinearLayout,里面分为两个部分(具体情况和Android版本和主题有关),上面是标题栏,下面是内容栏。在Activity通过setContextView所设置的布局文件其实就是被加载到内容栏之中的。

//获取内容栏
ViewGroup content = findViewById(R.android.id.content);
//获取我们设置的Viewcontext.getChildAt(0);
DecorView其实是一个FrameLayout,View层的事件都先经过DecorView,然后才传给我们的View。

这里写图片描述

这里写图片描述

MeasureSpec

1.MeasureSpec很大程度上决定一个View的尺寸规格,测量过程中,系统会将View的layoutParams根据父容器所施加的规则转换成对应的MeasureSpec,再根据这个measureSpec来测量出View的宽/高。 2.MeasureSpec代表一个32位的int值,高2位为SpecMode,低30位为SpecSize,SpecMode是指测量模式,SpecSize是指在某种测量模式下的规格大小。

MpecMode有三类; 1.UNSPECIFIED 父容器不对View进行任何限制,要多大给多大,一般用于系统内部 2.EXACTLY 父容器检测到View所需要的精确大小,这时候View的最终大小就是SpecSize所指定的值,对应LayoutParams中的match_parent和具体数值这两种模式。 3.AT_MOST 父容器指定了一个可用大小即SpecSize,View的大小不能大于这个值,不同View实现不同,对应LayoutParams中的wrap_content。

当View采用固定宽/高的时候,不管父容器的MeasureSpec的是什么,View的MeasureSpec都是精确模式兵其大小遵循Layoutparams的大小。 当View的宽/高是match_parent时,如果他的父容器的模式是精确模式,那View也是精确模式并且大小是父容器的剩余空间;如果父容器是最大模式,那么View也是最大模式并且起大小不会超过父容器的剩余空间。 当View的宽/高是wrap_content时,不管父容器的模式是精确还是最大化,View的模式总是最大化并且不能超过父容器的剩余空间。

对于DecorView,它的MeasureSpec由Window的尺寸和其自身的LayoutParams来共同确定,对于普通的View,其MeasureSpec由父容器的MeasureSpec和自身的Layoutparams来共同确定。

对于 DecorView,在ViewRootImpl源码中的measureHierarchy有如下一段代码:

.........
if (baseSize != 0 && desiredWindowWidth > baseSize) {
                childWidthMeasureSpec = getRootMeasureSpec(baseSize, lp.width);
                childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);
                performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
                if (DEBUG_DIALOG) Log.v(TAG, "Window " + mView + ": measured ("
                        + host.getMeasuredWidth() + "," + host.getMeasuredHeight() + ")");
                if ((host.getMeasuredWidthAndState()&View.MEASURED_STATE_TOO_SMALL) == 0) {
                    goodMeasure = true;
.........

我们查看一下getRootMeasureSpec方法的源码:

 private static int getRootMeasureSpec(int windowSize, int rootDimension) {
        int measureSpec;
        switch (rootDimension) {

        case ViewGroup.LayoutParams.MATCH_PARENT:
            // Window can't resize. Force root view to be windowSize.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
            break;
        case ViewGroup.LayoutParams.WRAP_CONTENT:
            // Window can resize. Set max size for root view.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
            break;
        default:
            // Window wants to be an exact size. Force root view to be that size.
            measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
            break;
        }
        return measureSpec;
    }

从上面的代码中就可以很容理解DecorView的MeasureSpec是如何产生的,rootDimension就是DecorView自身的LayoutParams,然后会根据这个值进行判断 LayoutParams.MATCH_PARENT:DecorView的MeasureSpec被赋值为精确模式,DecorView的大小就是Window的大小

ViewGroup.LayoutParams.WRAP_CONTENT:DecorView的MeasureSpec被赋值为最大模式,DecorView的大小不定,但是不能超过Window的大小

默认情况:DecorView的MeasureSpec被赋值为精确模式,DecorView的大小为自身LayoutParams设置的值,也就是rootDimension

接着是对于普通的View,也就是布局中的View,它的Measure过程由ViewGroup传递而来,其中有一个方法是measureChildWithMargins

 protected void measureChildWithMargins(View child,
            int parentWidthMeasureSpec, int widthUsed,
            int parentHeightMeasureSpec, int heightUsed) {
        final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                        + widthUsed, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                        + heightUsed, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }

在对子view进行measure之前会先调用getChildMeasureSpec方法来获取子view的MeasureSpec,从这段代码就可以看出来子view的MeasureSpec的确定与父容器的MeasureSpec(parentWidthMeasureSpec)还有自身的LayoutParams(lp.height和lp.width),还有View自己的Margin和Padding有关

接下来查看getChildMeasureSpec方法源码:

public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
        int specMode = MeasureSpec.getMode(spec);
        int specSize = MeasureSpec.getSize(spec);

        int size = Math.max(0, specSize - padding);

        int resultSize = 0;
        int resultMode = 0;

        switch (specMode) {
        // Parent has imposed an exact size on us
        case MeasureSpec.EXACTLY:
            if (childDimension >= 0) {
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size. So be it.
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent has imposed a maximum size on us
        case MeasureSpec.AT_MOST:
            if (childDimension >= 0) {
                // Child wants a specific size... so be it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size, but our size is not fixed.
                // Constrain child to not be bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent asked to see how big we want to be
        case MeasureSpec.UNSPECIFIED:
            if (childDimension >= 0) {
                // Child wants a specific size... let him have it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size... find out how big it should
                // be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size.... find out how
                // big it should be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            }
            break;
        }
        return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
    }

这里参数中的padding是指父容器的padding,这里是父容器所占用的空间,所以子view能使用的空间要减去这个padding的值。同时这个方法内部其实就是根据父容器的MeasureSpec结合子view的LayoutParams来确定子view的MeasureSpec

View的绘制流程

measure的过程 如果只是一个View,那么通过measure方法就完成了其测量的过程,如果是一个ViewGroup,除了测量自身外,还会调用子孩子的measure方法

1.View的measure过程 View的measure过程由其measure方法完成,其中有下面一段内容

.........
int cacheIndex = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT ? -1 :
                    mMeasureCache.indexOfKey(key);
            if (cacheIndex < 0 || sIgnoreMeasureCache) {
                // measure ourselves, this should set the measured dimension flag back
                onMeasure(widthMeasureSpec, heightMeasureSpec);
                mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
            } else {
                long value = mMeasureCache.valueAt(cacheIndex);
                // Casting a long to int drops the high 32 bits, no mask needed
                setMeasuredDimensionRaw((int) (value >> 32), (int) value);
                mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
            }
.........

可以知道View的measure方法内,其实调用了自身的onMeasure方法

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
//里面有一个getDefaultSize方法
public static int getDefaultSize(int size, int measureSpec) {
        int result = size;
        int specMode = MeasureSpec.getMode(measureSpec);
        int specSize = MeasureSpec.getSize(measureSpec);

        switch (specMode) {
        case MeasureSpec.UNSPECIFIED:
            result = size;
            break;
        case MeasureSpec.AT_MOST:
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        }
        return result;
    }

一般我们只需要看MeasureSpec.AT_MOST和MeasureSpec.EXACTLY两种情况,这两种情况返回的result其实都是measureSpec中取得的specSize,这个specSize就是View测量后的大小,这里之所以是View测量后的大小,是因为View的最终大小是在layout阶段确定的,所以要加已区分,一般情况下View测量大小和最终大小是一样的。

UNSPECIFIED情况下,result的值就是getSuggestedMinimumWidth()方法和getSuggestedMinimumHeight()返回的值,查看这两个方法

protected int getSuggestedMinimumWidth() {
        return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
    }


protected int getSuggestedMinimumHeight() {
        return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.getMinimumHeight());

}

从getSuggestedMinimumWidth代码可以看出,如果View没有设置背景,那么宽度就为mMinWidth,这个值对应android:minWidth这个属性所设定的值,如果View设置了背景,则为max(mMinWidth, mBackground.getMinimumWidth())

 public int getMinimumWidth() {
        final int intrinsicWidth = getIntrinsicWidth();
        return intrinsicWidth > 0 ? intrinsicWidth : 0;
    }

查看mBackground.getMinimumWidth()方法,它其实是Drawable的方法,如果intrinsicHeight也就是原始的宽度不为0,就返回它,如果为0,就返回0。

从View的getDefaultSize方法可以得出结论:View的宽高由specSize决定,如果我们通过继承View来自定义控件需要重写onMeasure方法,并设置WRAP_CONTENT时的大小,否则在布局中使用WRAP_CONTENT相当于使用MATCH_PARENT

原因:因为View在布局中使用WRAP_CONTENT就相当于specMode为AT_MOST,而这种情况下,result = specSize,这个specSize的大小为parentSize, parentSize就是父容器目前可用的大小,也就是父容器当前剩余空间的大小,那这时候和在布局中使用MATCH_PARENT效果是一样的

所以在AT_MOST模式下,我们一般都会给View设定默认的内部宽高,并在WRAP_CONTENT时设置此宽高即可。 可以通过查看TextView、ImageView的源码,可以得知在WRAP_CONTENT下,onMeasure方法均做了特殊的处理,下面是TextView的onMeasure中的一段内容

if (widthMode == MeasureSpec.AT_MOST) {
                width = Math.min(widthSize, width);
            }

2.ViewGroup的measure流程 ViewGroup是一个抽象类,它没有重写View的onMeasure方法,而是自己提供了一个measureChildren方法

protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
        final int size = mChildrenCount;
        final View[] children = mChildren;
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
    }

里面会对子元素进行遍历,然后调用measureChild方法去测量每一个子元素的宽高

protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        final LayoutParams lp = child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}

在对子view进行measure之前会先调用getChildMeasureSpec方法来获取子孩子的MeasureSpec,从这段代码就可以看出来子view的MeasureSpec的确定与父容器的MeasureSpec(parentWidthMeasureSpec和parentHeightMeasureSpec)还有自身的LayoutParams(lp.height和lp.width),还有View自己的Margin和Padding有关,最后就是调用子view的measure方法

ViewGroup并没有去定义测量的具体过程,这是因为ViewGroup是一个抽象类,其onMeasure方法需要各个子类去实现,因为每个ViewGroup的实现类,例如LinearLayout,RelativeLayout等的布局方式都是不同的,所以不可能一概而论的来写onMeasure方法。

接下来分析LinearLayout的onMeasure方法:

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        if (mOrientation == VERTICAL) {
            measureVertical(widthMeasureSpec, heightMeasureSpec);
        } else {
            measureHorizontal(widthMeasureSpec, heightMeasureSpec);
        }
}

查看measureVertical方法

// See how tall everyone is. Also remember max width.
        for (int i = 0; i < count; ++i) {
            final View child = getVirtualChildAt(i);

            if (child == null) {
                mTotalLength += measureNullChild(i);
                continue;
            }

            if (child.getVisibility() == View.GONE) {
               i += getChildrenSkipCount(child, i);
               continue;
            }

            if (hasDividerBeforeChildAt(i)) {
                mTotalLength += mDividerHeight;
            }

            LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();

            totalWeight += lp.weight;

            if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) {
                // Optimization: don't bother measuring children who are going to use
                // leftover space. These views will get measured again down below if
                // there is any leftover space.
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
                skippedMeasure = true;
            } else {
                int oldHeight = Integer.MIN_VALUE;

                if (lp.height == 0 && lp.weight > 0) {
                    // heightMode is either UNSPECIFIED or AT_MOST, and this
                    // child wanted to stretch to fill available space.
                    // Translate that to WRAP_CONTENT so that it does not end up
                    // with a height of 0
                    oldHeight = 0;
                    lp.height = LayoutParams.WRAP_CONTENT;
                }

                // Determine how big this child would like to be. If this or
                // previous children have given a weight, then we allow it to
                // use all available space (and we will shrink things later
                // if needed).
                measureChildBeforeLayout(
                       child, i, widthMeasureSpec, 0, heightMeasureSpec,
                       totalWeight == 0 ? mTotalLength : 0);

                if (oldHeight != Integer.MIN_VALUE) {
                   lp.height = oldHeight;
                }

                final int childHeight = child.getMeasuredHeight();
                final int totalLength = mTotalLength;
                mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
                       lp.bottomMargin + getNextLocationOffset(child));

                if (useLargestChild) {
                    largestChildHeight = Math.max(childHeight, largestChildHeight);
                }
            }

            /**
             * If applicable, compute the additional offset to the child's baseline
             * we'll need later when asked {@link #getBaseline}.
             */
            if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1)) {
               mBaselineChildTop = mTotalLength;
            }

            // if we are trying to use a child index for our baseline, the above
            // book keeping only works if there are no children above it with
            // weight.  fail fast to aid the developer.
            if (i < baselineChildIndex && lp.weight > 0) {
                throw new RuntimeException("A child of LinearLayout with index "
                        + "less than mBaselineAlignedChildIndex has weight > 0, which "
                        + "won't work.  Either remove the weight, or don't set "
                        + "mBaselineAlignedChildIndex.");
            }

            boolean matchWidthLocally = false;
            if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT) {
                // The width of the linear layout will scale, and at least one
                // child said it wanted to match our width. Set a flag
                // indicating that we need to remeasure at least that view when
                // we know our width.
                matchWidth = true;
                matchWidthLocally = true;
            }

            final int margin = lp.leftMargin + lp.rightMargin;
            final int measuredWidth = child.getMeasuredWidth() + margin;
            maxWidth = Math.max(maxWidth, measuredWidth);
            childState = combineMeasuredStates(childState, child.getMeasuredState());

            allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
            if (lp.weight > 0) {
                /*
                 * Widths of weighted Views are bogus if we end up
                 * remeasuring, so keep them separate.
                 */
                weightedMaxWidth = Math.max(weightedMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);
            } else {
                alternativeMaxWidth = Math.max(alternativeMaxWidth,
                        matchWidthLocally ? margin : measuredWidth);
            }

            i += getChildrenSkipCount(child, i);
        }

遍历子元素,调用他们的measureChildBeforeLayout方法,这个方法内会测量子孩子的宽高,并且有一个mTotalLength来记录LinearLayout 在竖直方向的初步高度,每测量一次子元素,mTotalLength都会增加,增加部分包括子元素的高度以及子元素竖直方向的margin

void measureChildBeforeLayout(View child, int childIndex,
            int widthMeasureSpec, int totalWidth, int heightMeasureSpec,
            int totalHeight) {
        measureChildWithMargins(child, widthMeasureSpec, totalWidth,
                heightMeasureSpec, totalHeight);
    }
里面调用了child.measure方法,也就是子孩子的measure方法
protected void measureChildWithMargins(View child,
            int parentWidthMeasureSpec, int widthUsed,
            int parentHeightMeasureSpec, int heightUsed) {
        final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                        + widthUsed, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                        + heightUsed, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}

当子元素测量完毕后,LinearLayout会测量自身的大小,对于竖直的LinearLayout,它在水平方向上的测量过程,遵循View的测量过程,在竖直方向上,如果采用的是match_parent或者具体的数值,那么它的测量过程和View的一致,即高度为specSize;如果它的布局中高度采用wrap_content,那么高度是子元素所占用的高度总和,但这个和不能超过父容器的剩余空间,当然还要考虑padding,竖直方向的结论可以从下面代码得知:

public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
        final int specMode = MeasureSpec.getMode(measureSpec);
        final int specSize = MeasureSpec.getSize(measureSpec);
        final int result;
        switch (specMode) {
            case MeasureSpec.AT_MOST:
                if (specSize < size) {
                    result = specSize | MEASURED_STATE_TOO_SMALL;
                } else {
                    result = size;
                }
                break;
            case MeasureSpec.EXACTLY:
                result = specSize;
                break;
            case MeasureSpec.UNSPECIFIED:
            default:
                result = size;
        }
        return result | (childMeasuredState & MEASURED_STATE_MASK);
}

有时候onMeasure中拿到的测量宽高可能是不准确的,比较好的习惯是在onLayout中去获取View的测量宽高和最终宽高

在Activity中,在onCreate,onStart,onResume中均无法正确获得View的宽高信息,这是因为measure和Activity的生命周期是不同步的,所以很可能View没有测量完毕,获得的宽高是0.

measure总结 1.measure过程主要就是从顶层父View向子View递归调用view.measure方法(measure中又回调onMeasure方法)的过程。具体measure核心主要有如下几点:

2.MeasureSpec(View的内部类)测量规格为int型,值由高2位规格模式specMode和低30位具体尺寸specSize组成。其中specMode只有三种值:

MeasureSpec.EXACTLY //确定模式,父View希望子View的大小是确定的,由specSize决定;
MeasureSpec.AT_MOST //最多模式,父View希望子View的大小最多是specSize指定的值;
MeasureSpec.UNSPECIFIED //未指定模式,父View完全依据子View的设计值来决定;

3.View的measure方法是final的,不允许重载,View子类只能重载onMeasure来完成自己的测量逻辑。

4.最顶层DecorView测量时的MeasureSpec是由ViewRootImpl中getRootMeasureSpec方法确定的(LayoutParams宽高参数均为MATCH_PARENT,specMode是EXACTLY,specSize为物理屏幕大小)。

5.ViewGroup类提供了measureChild,measureChild和measureChildWithMargins方法,简化了父子View的尺寸计算。

6.只要是ViewGroup的子类就必须要求LayoutParams继承子MarginLayoutParams,否则无法使用layout_margin参数。

7.View的布局大小由父View和子View共同决定。

8.使用View的getMeasuredWidth()和getMeasuredHeight()方法来获取View测量的宽高,必须保证这两个方法在onMeasure流程之后被调用才能返回有效值。

layout的过程 ViewGroup的位置确定后,它在onLayout中会遍历所有的子元素并调用子元素layout方法,子元素layout方法中又会调用onLayout方法,View的layout方法确定自身的位置,而onLayout方法方法确定子孩子的位置

public void layout(int l, int t, int r, int b) {
        if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
            onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        }

        int oldL = mLeft;
        int oldT = mTop;
        int oldB = mBottom;
        int oldR = mRight;

        boolean changed = isLayoutModeOptical(mParent) ?
                setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);

        if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
            onLayout(changed, l, t, r, b);
            mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;

            ListenerInfo li = mListenerInfo;
            if (li != null && li.mOnLayoutChangeListeners != null) {
                ArrayList<OnLayoutChangeListener> listenersCopy =
                        (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
                int numListeners = listenersCopy.size();
                for (int i = 0; i < numListeners; ++i) {
                    listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
                }
            }
        }

        mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
        mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}

layout方法的大致流程如下:首先会通过setFrame方法来确定mLeft;mTop;mBottom; mRight;只要这四个点一旦确定,那么View在父容器中的位置就确定了,接着会调用onLayout方法,该方法目的是父容器来确定子元素的位置,无论是View还是ViewGroup都没有实现onLayout方法,我们查看LinearLayout的onLayout方法

@Override
    protected void onLayout(boolean changed, int l, int t, int r, int b) {
        if (mOrientation == VERTICAL) {
            layoutVertical(l, t, r, b);
        } else {
            layoutHorizontal(l, t, r, b);
        }
}

查看layoutVertical中关键代码

for (int i = 0; i < count; i++) {
            final View child = getVirtualChildAt(i);
            if (child == null) {
                childTop += measureNullChild(i);
            } else if (child.getVisibility() != GONE) {
                final int childWidth = child.getMeasuredWidth();
                final int childHeight = child.getMeasuredHeight();

                final LinearLayout.LayoutParams lp =
                        (LinearLayout.LayoutParams) child.getLayoutParams();

                int gravity = lp.gravity;
                if (gravity < 0) {
                    gravity = minorGravity;
                }
                final int layoutDirection = getLayoutDirection();
                final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
                switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
                    case Gravity.CENTER_HORIZONTAL:
                        childLeft = paddingLeft + ((childSpace - childWidth) / 2)
                                + lp.leftMargin - lp.rightMargin;
                        break;

                    case Gravity.RIGHT:
                        childLeft = childRight - childWidth - lp.rightMargin;
                        break;

                    case Gravity.LEFT:
                    default:
                        childLeft = paddingLeft + lp.leftMargin;
                        break;
                }

                if (hasDividerBeforeChildAt(i)) {
                    childTop += mDividerHeight;
                }

                childTop += lp.topMargin;
                setChildFrame(child, childLeft, childTop + getLocationOffset(child),
                        childWidth, childHeight);
                childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);

                i += getChildrenSkipCount(child, i);
            }
        }

这个方法会遍历所有的子元素并调用setChildFrame方法来为子元素指定对应的位置,其中childTop的数值会不断的增大,这意味着后面的子元素还位于靠下的位置,刚好符合竖直的LinearLayout的特性,setChildFrame方法中不过是调用了子元素的Layout方法而已

private void setChildFrame(View child, int left, int top, int width, int height) {        
        child.layout(left, top, left + width, top + height);
}

同时,会发现setChildFrame中的width和height实际上就是子元素的测量宽高

final int childWidth = child.getMeasuredWidth();
             final int childHeight = child.getMeasuredHeight();

View的layout方法中会通过setFrame方法去设置子元素四个顶点的位置,这样子元素的位置就可以确定

int oldWidth = mRight - mLeft;
            int oldHeight = mBottom - mTop;
            int newWidth = right - left;
            int newHeight = bottom - top;
            boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);

            // Invalidate our old position
            invalidate(sizeChanged);

            mLeft = left;
            mTop = top;
            mRight = right;
            mBottom = bottom;
            mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom);

接下来是View的getWidth和getHeight方法,结合里面的实现,可以发现他们分别返回的就是View测量的宽度和高度

@ViewDebug.ExportedProperty(category = "layout")
    public final int getWidth() {
        return mRight - mLeft;
    }

    /**
     * Return the height of your view.
     *
     * @return The height of your view, in pixels.
     */
    @ViewDebug.ExportedProperty(category = "layout")
    public final int getHeight() {
        return mBottom - mTop;
}

layout总结 1.layout也是从顶层父View向子View的递归调用view.layout方法的过程,即父View根据上一步measure子View所得到的布局大小和布局参数,将子View放在合适的位置上。

2.View.layout方法可被重载,ViewGroup.layout为final的不可重载,ViewGroup.onLayout为abstract的,子类必须重载实现自己的位置逻辑。

3.measure操作完成后得到的是对每个View经测量过的measuredWidth和measuredHeight,layout操作完成之后得到的是对每个View进行位置分配后的mLeft、mTop、mRight、mBottom,这些值都是相对于父View来说的。

4.凡是layout_XXX的布局属性基本都针对的是包含子View的ViewGroup的,当对一个没有父容器的View设置相关layout_XXX属性是没有任何意义的。

5.使用View的getWidth()和getHeight()方法来获取View测量的宽高,必须保证这两个方法在onLayout流程之后被调用才能返回有效值。 draw的过程 View的绘制过程遵循以下几步: 1)绘制背景background.draw(canvas) 2)绘制自己(onDraw) 3)绘制 children(dispatchDraw) 4)绘制装饰(onDrawScrollBars)

public void draw(Canvas canvas) {
        final int privateFlags = mPrivateFlags;
        final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
                (mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
        mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;

        /*
         * Draw traversal performs several drawing steps which must be executed
         * in the appropriate order:
         *
         *      1. Draw the background
         *      2. If necessary, save the canvas' layers to prepare for fading
         *      3. Draw view's content
         *      4. Draw children
         *      5. If necessary, draw the fading edges and restore layers
         *      6. Draw decorations (scrollbars for instance)
         */

        // Step 1, draw the background, if needed
        int saveCount;

        if (!dirtyOpaque) {
            drawBackground(canvas);
        }

        // skip step 2 & 5 if possible (common case)
        final int viewFlags = mViewFlags;
        boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
        boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
        if (!verticalEdges && !horizontalEdges) {
            // Step 3, draw the content
            if (!dirtyOpaque) onDraw(canvas);

            // Step 4, draw the children
            dispatchDraw(canvas);

            // Overlay is part of the content and draws beneath Foreground
            if (mOverlay != null && !mOverlay.isEmpty()) {
                mOverlay.getOverlayView().dispatchDraw(canvas);
            }

            // Step 6, draw decorations (foreground, scrollbars)
            onDrawForeground(canvas);

            // we're done...
            return;
        }

        /*
         * Here we do the full fledged routine...
         * (this is an uncommon case where speed matters less,
         * this is why we repeat some of the tests that have been
         * done above)
         */

        boolean drawTop = false;
        boolean drawBottom = false;
        boolean drawLeft = false;
        boolean drawRight = false;

        float topFadeStrength = 0.0f;
        float bottomFadeStrength = 0.0f;
        float leftFadeStrength = 0.0f;
        float rightFadeStrength = 0.0f;

        // Step 2, save the canvas' layers
        int paddingLeft = mPaddingLeft;

        final boolean offsetRequired = isPaddingOffsetRequired();
        if (offsetRequired) {
            paddingLeft += getLeftPaddingOffset();
        }

        int left = mScrollX + paddingLeft;
        int right = left + mRight - mLeft - mPaddingRight - paddingLeft;
        int top = mScrollY + getFadeTop(offsetRequired);
        int bottom = top + getFadeHeight(offsetRequired);

        if (offsetRequired) {
            right += getRightPaddingOffset();
            bottom += getBottomPaddingOffset();
        }

        final ScrollabilityCache scrollabilityCache = mScrollCache;
        final float fadeHeight = scrollabilityCache.fadingEdgeLength;
        int length = (int) fadeHeight;

        // clip the fade length if top and bottom fades overlap
        // overlapping fades produce odd-looking artifacts
        if (verticalEdges && (top + length > bottom - length)) {
            length = (bottom - top) / 2;
        }

        // also clip horizontal fades if necessary
        if (horizontalEdges && (left + length > right - length)) {
            length = (right - left) / 2;
        }

        if (verticalEdges) {
            topFadeStrength = Math.max(0.0f, Math.min(1.0f, getTopFadingEdgeStrength()));
            drawTop = topFadeStrength * fadeHeight > 1.0f;
            bottomFadeStrength = Math.max(0.0f, Math.min(1.0f, getBottomFadingEdgeStrength()));
            drawBottom = bottomFadeStrength * fadeHeight > 1.0f;
        }

        if (horizontalEdges) {
            leftFadeStrength = Math.max(0.0f, Math.min(1.0f, getLeftFadingEdgeStrength()));
            drawLeft = leftFadeStrength * fadeHeight > 1.0f;
            rightFadeStrength = Math.max(0.0f, Math.min(1.0f, getRightFadingEdgeStrength()));
            drawRight = rightFadeStrength * fadeHeight > 1.0f;
        }

        saveCount = canvas.getSaveCount();

        int solidColor = getSolidColor();
        if (solidColor == 0) {
            final int flags = Canvas.HAS_ALPHA_LAYER_SAVE_FLAG;

            if (drawTop) {
                canvas.saveLayer(left, top, right, top + length, null, flags);
            }

            if (drawBottom) {
                canvas.saveLayer(left, bottom - length, right, bottom, null, flags);
            }

            if (drawLeft) {
                canvas.saveLayer(left, top, left + length, bottom, null, flags);
            }

            if (drawRight) {
                canvas.saveLayer(right - length, top, right, bottom, null, flags);
            }
        } else {
            scrollabilityCache.setFadeColor(solidColor);
        }

        // Step 3, draw the content
        if (!dirtyOpaque) onDraw(canvas);

        // Step 4, draw the children
        dispatchDraw(canvas);

        // Step 5, draw the fade effect and restore layers
        final Paint p = scrollabilityCache.paint;
        final Matrix matrix = scrollabilityCache.matrix;
        final Shader fade = scrollabilityCache.shader;

        if (drawTop) {
            matrix.setScale(1, fadeHeight * topFadeStrength);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, right, top + length, p);
        }

        if (drawBottom) {
            matrix.setScale(1, fadeHeight * bottomFadeStrength);
            matrix.postRotate(180);
            matrix.postTranslate(left, bottom);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, bottom - length, right, bottom, p);
        }

        if (drawLeft) {
            matrix.setScale(1, fadeHeight * leftFadeStrength);
            matrix.postRotate(-90);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, left + length, bottom, p);
        }

        if (drawRight) {
            matrix.setScale(1, fadeHeight * rightFadeStrength);
            matrix.postRotate(90);
            matrix.postTranslate(right, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(right - length, top, right, bottom, p);
        }

        canvas.restoreToCount(saveCount);

        // Overlay is part of the content and draws beneath Foreground
        if (mOverlay != null && !mOverlay.isEmpty()) {
            mOverlay.getOverlayView().dispatchDraw(canvas);
        }

        // Step 6, draw decorations (foreground, scrollbars)
        onDrawForeground(canvas);
}

View的绘制过程的传递是通过dispatchDraw实现的,dispatchdraw会遍历调用所有子元素的draw方法。如此draw事件就一层一层的传递下去。

draw总结 1.如果该View是一个ViewGroup,则需要递归绘制其所包含的所有子View。

2.View默认不会绘制任何内容,真正的绘制都需要自己在子类中实现。

3.View的绘制是借助onDraw方法传入的Canvas类来进行的。

4.在获取画布剪切区(每个View的draw中传入的Canvas)时会自动处理掉padding,子View获取Canvas不用关注这些逻辑,只用关心如何绘制即可。

5.默认情况下子View的ViewGroup.drawChild绘制顺序和子View被添加的顺序一致,但是你也可以重载ViewGroup.getChildDrawingOrder()方法提供不同顺序。

更多Android进阶指南 可以扫码 解锁 《Android十大板块文档》

1.Android车载应用开发系统学习指南(附项目实战)

2.Android Framework学习指南,助力成为系统级开发高手

3.2024最新Android中高级面试题汇总+解析,告别零offer

4.企业级Android音视频开发学习路线+项目实战(附源码)

5.Android Jetpack从入门到精通,构建高质量UI界面

6.Flutter技术解析与实战,跨平台首要之选

7.Kotlin从入门到实战,全方面提升架构基础

8.高级Android插件化与组件化(含实战教程和源码)

9.Android 性能优化实战+360°全方面性能调优

10.Android零基础入门到精通,高手进阶之路

敲代码不易,关注一下吧。ღ( ´・ᴗ・` ) 🤔

Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐