作者丨刘聪NLP

来源丨知乎

写在前面

大型语言模型横行,之前非常焦虑,现在全面拥抱。目前也有很多开源项目进行大模型微调等,笔者也做了一阵子大模型了,特此来介绍一下ChatGLM-6B模型微调经验,并汇总了一下目前开源项目&数据。笔者与很多人微调结论不同,本人在采用单指令上进行模型微调,发现模型微调之后,「并没有出现灾难性遗忘现象」

项目地址:https://github.com/liucongg/ChatGLM-Finetuning

ChatGLM-6B模型微调

模型越大对显卡的要求越高,目前主流对大模型进行微调方法有三种:Freeze方法、P-Tuning方法和Lora方法。笔者也通过这三种方法,在信息抽取任务上,对ChatGLM-6B大模型进行模型微调。为了防止大模型的数据泄露,采用一个领域比赛数据集-汽车工业故障模式关系抽取(https://www.datafountain.cn/competitions/584),随机抽取50条作为测试集。

详细代码见上面的GitHub链接,并且也被ChatGLM官方收录。

d8f6a1e50cf214c3e69a1b038efcff1f.jpeg

Freeze方法

Freeze方法,即参数冻结,对原始模型部分参数进行冻结操作,仅训练部分参数,以达到在单卡或不进行TP或PP操作,就可以对大模型进行训练。

微调代码,见finetuning_freeze.py,核心部分如下:

for name, param in model.named_parameters():
    if not any(nd in name for nd in ["layers.27", "layers.26", "layers.25", "layers.24", "layers.23"]):
        param.requires_grad = False

针对模型不同层进行修改,可以自行修改。训练代码均采用DeepSpeed进行训练,可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text等,可根据自己的任务配置。

CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_freeze.py --num_train_epochs 5 --train_batch_size 2

三元组抽取的推理代码,见predict_freeze.py,其他任务可以根据自己的评价标准进行推理预测。

PT方法

PT方法,即P-Tuning方法,参考ChatGLM官方代码(https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/README.md) ,是一种针对于大模型的soft-prompt方法。

f28287f66ea5e24f1913573d7b1e82c7.jpeg

  • P-Tuning(https://arxiv.org/abs/2103.10385),仅对大模型的Embedding加入新的参数。

  • P-Tuning-V2(https://arxiv.org/abs/2110.07602),将大模型的Embedding和每一层前都加上新的参数。

微调代码,见finetuning_pt.py,核心部分如下:

config = ChatGLMConfig.from_pretrained(args.model_dir)
config.pre_seq_len = args.pre_seq_len
config.prefix_projection = args.prefix_projection

model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir, config=config)

for name, param in model.named_parameters():
    if not any(nd in name for nd in ["prefix_encoder"]):
        param.requires_grad = False

当prefix_projection为True时,为P-Tuning-V2方法,在大模型的Embedding和每一层前都加上新的参数;为False时,为P-Tuning方法,仅在大模型的Embedding上新的参数。

可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text、pre_seq_len、prompt_text等, 可根据自己的任务配置。

CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_pt.py --num_train_epochs 5 --train_batch_size 2 --pre_seq_len 16

三元组抽取的推理代码,见predict_pt.py,其他任务可以根据自己的评价标准进行推理预测。

Lora方法

Lora方法,即在大型语言模型上对指定参数增加额外的低秩矩阵,并在模型训练过程中,仅训练而外增加的参数。当“秩值”远小于原始参数维度时,新增的低秩矩阵参数量很小,达到仅训练很小的参数,就能获取较好的结果。

e28bb81f1833d6aaefbdca43a18c46ea.jpeg

  • Lora论文:https://arxiv.org/abs/2106.09685

  • 官方代码:https://github.com/microsoft/LoRA

  • HuggingFace封装的peft库:https://github.com/huggingface/peft

微调代码,见finetuning_lora.py,核心部分如下:

model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir)
config = LoraConfig(r=args.lora_r,
                    lora_alpha=32,
                    target_modules=["query_key_value"],
                    lora_dropout=0.1,
                    bias="none",
                    task_type="CAUSAL_LM",
                    inference_mode=False,
                    )

model = get_peft_model(model, config)

可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text、lora_r等,可根据自己的任务配置。

CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_lora.py --num_train_epochs 5 --train_batch_size 2 --lora_r 8

三元组抽取的推理代码,见predict_lora.py,其他任务可以根据自己的评价标准进行推理预测。

注意:对于结果需要保持一致的任务(即关掉dropout,解码关掉do_sample),需要保存模型的adapter_config.json文件中,inference_mode参数修改成false,并将模型执行model.eval()操作。主要原因是chatglm模型代码中,没有采用Conv1D函数。

三元组抽取实验结果

  • 模型训练时,最大长度为768,Batch大小为2,训练轮数为5,fp16训练,采用DeepSpeed的Zero-1训练;

  • PT为官方的P-Tuning V2训练方法,PT-Only-Embedding表示仅对Embedding进行soft-prompt,Freeze仅训练模型后五层参数,Lora采用低秩矩阵方法训练,秩为8;

  • 由于之前训练PT在48G-A40显卡上会出现OOM,因此之前进行PT实验时对模型开启了gradient_checkpointing_enable,使得模型显存占用变小,但训练时长增加。

  • 训练示例:

prompt_text:你现在是一个信息抽取模型,请你帮我抽取出关系内容为\"性能故障\", \"部件故障\", \"组成\"和 \"检测工具\"的相关三元组,三元组内部用\"_\"连接,三元组之间用\\n分割。文本:
输入:故障现象:发动机水温高,风扇始终是低速转动,高速档不工作,开空调尤其如此。
输出:发动机_部件故障_水温高\n风扇_部件故障_低速转动

时间换空间,可用很好的解决显卡的资源问题,简单玩玩还可以,如果想要模型达到最优效果或可用快速看到效果,还不如租张A100卡,快速实验,推理阶段再用自己的小破卡。

笔者找到一家新的算力平台-揽睿星舟,单张A100仅要6.4元/小时,我翻了一圈,算是便宜的了(反正比AutoDL便宜一点,便宜一点是一点吧)。

下面实验结果均是在租的80G-A100上进行的实验,与Github里用的A40的实验结果会有些差异,主要在训练时长(纯训练速度,剔除模型保存的时间)。说实话,真的要训练一个大模型,多个A100是必不可少的,可以减少很多模型并行的操作,效果上也更好把控一些。

微调方法

PT-Only-Embedding

PT

Freeze

Lora






显卡占用

37G

56G

24G

39G

总参数

6.259B

7.211B

6.255B

6.259B

可训练参数占比

0.0586%

13.26%

16.10%

0.0586%

训练耗时

20min

52min

46min

25min

测试结果F1

0.0

0.6283

0.5675

0.5359

结果分析:

  • 效果为PT>Freeze>Lora>PT-Only-Embedding;

  • 速度为PT-Only-Embedding>Lora>Freeze>PT;

  • PT-Only-Embedding效果很不理想,发现在训练时,最后的loss仅能收敛到2.几,而其他机制可以收敛到0.几。分析原因为,输出内容形式与原有语言模型任务相差很大,仅增加额外Embedding参数,不足以改变复杂的下游任务;

  • PT方法占用显存更大,因为也增加了很多而外参数;

  • 测试耗时,采用float16进行模型推理,由于其他方法均增加了额外参数,因此其他方法的推理耗时会比Freeze方法要高。当然由于是生成模型,所以生成的长度也会影响耗时;

  • 模型在指定任务上微调之后,并没有丧失原有能力,例如生成“帮我写个快排算法”,依然可以生成-快排代码;

  • 由于大模型微调都采用大量instruction进行模型训练,仅采用单一的指令进行微调时,对原来其他的指令影响不大,因此并没导致原来模型的能力丧失;

  • 上面测试仅代表个人测试结果。

很多同学在微调后出现了灾难性遗忘现象,但我这边并没有出现,对“翻译任务”、“代码任务”、“问答任务”进行测试,采用freeze模型,可以用test_forgetting.py进行测试,具体测试效果如下:

0941875ae81121b5c3bb49bc84234c45.png

  • 代码任务

05e88c362695029bc2e5f9b3ccd06109.jpeg

  • 问答任务

8dbbe8be6dac9e8782a6a5c9a85f461a.png

后面会把生成任务、分类任务做完,请持续关注Github,会定期更新。(太忙了,会抓紧时间更新,并且官方代码也在持续更新,如遇到代码代码调不通的情况,请及时联系我,我在github也给出了我的代码版本和模型版本)

中文开源大模型&项目

虽然出来很多大模型,但Open的&中文可直接使用的并不多,下面对中文开源大模型、数据集和项目进行一下汇总。

f6f8c627a7972e4f59187b0be915ecb3.jpeg

中文开源大模型

直接可微调,无需指令增量训练:

  • ChatGLM-6B:https://huggingface.co/THUDM/chatglm-6b

  • ChatYuan-large-v2:https://huggingface.co/ClueAI/ChatYuan-large-v2

原始模型多语言or英文,需要中文指令数据集增量训练:

  • BloomZ:https://huggingface.co/bigscience/bloomz

  • LLama:https://github.com/facebookresearch/llama

  • Flan-T5:https://huggingface.co/google/flan-t5-xxl

  • OPT:https://huggingface.co/facebook/opt-66b

中文开源指令数据

下面中文指令集,大多数从Alpaca翻译而来,请看下面项目中data目录。目前通过ChatGPT或者GPT4作为廉价标注工为自己的数据进行数据标注一个不错的思路。

  • [1]:https://github.com/LC1332/Chinese-alpaca-lora

  • [2]:https://github.com/hikariming/alpaca_chinese_dataset

  • [3]:https://github.com/carbonz0/alpaca-chinese-dataset

  • [4]:https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM

  • [5]:https://github.com/LianjiaTech/BELLE

  • [6]:https://huggingface.co/datasets/JosephusCheung/GuanacoDataset

开源项目

总结下面较火的开源项目:

  • BELLE:https://github.com/LianjiaTech/BELLE

  • ChatGLM:https://github.com/THUDM/ChatGLM-6B

  • Luotuo-Chinese-LLM:https://github.com/LC1332/Luotuo-Chinese-LLM

  • stanford_alpaca:https://github.com/tatsu-lab/stanford_alpaca

总结

目前各大厂的大模型陆陆续续放出,堪称百家争鸣!个人玩家也是全面拥抱,想尽一切办法来训练微调大模型。只愿大家以后可以实现“大模型”自由。愿再无“model-as-a-service”。

4f4ffb01498f8f4614707f5f664ba295.gif

分享

收藏

点赞

在看

bd19c08e778b4cda3b60d7b3646463d8.gif

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐