简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文介绍了一种可帮助DBA快速可靠地诊断OLTP数据库中的性能问题的实用工具:DBSherlock。通过分析在系统生命周期内收集的数百个统计信息和配置,算法可以快速识别导致性能下降的潜在原因并将其呈现给DBA。最终由DBA所确定的根因又会被重新反馈并纳入算法,作为一种新的因果模型,以改善未来的诊断。
一套基于大语言模型的多场景智能运维框架,这套框架支持多个智能体Agent的协作与动态编排调度,有计划,记忆,反思与推理等能力,为SRE同学提供智能化服务。
根据松鼠AI首席科学家、AI研究院负责人文青松团队成员在2023 CCF国际AIOps挑战赛决赛暨“大模型时代的AIOps”研讨会闪电论文分享环节上的演讲整理成文。
本文为微软主管研究员马明华博士在2023 CCF国际AIOps挑战赛决赛暨“大模型时代的AIOps”研讨会论文闪电分享环节的演讲内容整理而成。
本文为大家盘点一下与多维定位相关的5个具有代表性的算法(文献)原理、针对场景、优劣、落地性等。
本文是根据华为技术专家陶仕敏先生在2023 CCF国际AIOps挑战赛决赛暨“大模型时代的AIOps”研讨会闪电论文分享环节上的演讲整理成文。
DDopS团队来自中山大学计算机学院Intelligent DDS 实验室。实验室主要方向为云计算、智能运维(AIOps)、软件定义网络、分布式软件资源管理与优化、eBPF 性能监控与优化等。
在智能运维行业逐渐回归理性的趋势下,各企业都更关注效果和价值实现的问题。在以效果为导向的智能运维系统搭建过程中,首先要确定可量化度量和多方对齐的价值,并在此基础上制定全局或阶段性目标,引入协作式迭代流程来逐步解决问题,最后通过科学的“复盘效果+生产效果”来进行效果衡量。
9月18-19日,“科技引领发展 创新赢得未来——2023第二届国际互联网产业科技创新大会”在国家会议中心召开,必示科技产品部总监聂晓辉代表优秀高新科技企业在会上进行了关于《基于运维指标体系的智能事件管理》的主题演讲。
目前报名已经进入倒计时,请选手们抓紧最后时间报名参赛!