
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
系列文章目录Python专栏 | 脑电图和脑磁图(EEG/MEG)的数据分析方法(一)文章目录系列文章目录正文总结正文MNE包的核心结构之一——Raw的对象里有几种内置的可视化EEG/MEG数据的方法。代码示例:raw.plot_psd(fmax=50)Note:我们用plot_psd显示每种传感器类型的功率谱密度(Power Spectral Density,PSD)。fmax=50表示仅绘制
系列文章目录Python专栏 | 脑电图和脑磁图(EEG/MEG)的数据分析方法之载入数据Python专栏 | MNE脑电数据(EEG/MEG)可视化Python专栏 | MNE数据预处理方法——独立成分分析Python专栏 | 独立成分分析(ICA)的实例应用:消除伪影信号Python专栏 | ICA应用:如何识别伪影信号?(一)Python专栏 | ICA应用:如何识别伪影信号?(二)Pyth
微信公众号关注:脑机接口研习社追踪脑机接口最新发展资讯系列文章目录Day1 当脑机接口遇上机器学习:周志华《机器学习》读书笔记之绪论Day2 周志华《机器学习》读书笔记之模型评估文章目录系列文章目录前言Day 3一、比较检验1. 二项分布和二项检验2. t检验(t-test)3. 交叉验证t检验4. McNemar检验5. Friedman检验二、 偏差和方差三、思考:如何与脑机接口结合前言脑机接
系列文章目录脑机接口专栏 | 如何分析静息状态的fMRI数据?(一)脑机接口专栏 | 如何分析静息状态的fMRI数据?(二)文章目录系列文章目录一、Functional Integration Methods for Identifying Neural Networks1. Functional Connectivity Density Analysis2. Seed-Based Functio
系列文章目录脑机接口专栏 | 如何分析静息状态的fMRI数据?(一)文章目录系列文章目录一、Functional Segregation Methods for Identifying Neural Networks二、ALFF Analysis三、Regional Homogeneity Analysis一、Functional Segregation Methods for Identifyi
文章目录前言一、载入数据(Loading data)二、总结前言有关脑电图(EEG)的内容请看下面这篇文章。脑机接口专栏 | 利用黎曼几何分析EEG脑电信号(一)脑磁图(Magnetoencephalography),或简称MEG,是集低温超导、生物工程、电子工程、医学工程等二十一世纪尖端科学技术于一体,是无创伤性地探测大脑电磁生理信号的一种脑功能检测技术。在MEG 问世以前,只有EEG 能检测神
MNE教程往期回顾脑电图和脑磁图(EEG/MEG)的数据分析方法之载入数据MNE脑电数据(EEG/MEG)可视化MNE数据预处理方法——独立成分分析独立成分分析(ICA)的实例应用:消除伪影信号ICA应用:如何识别伪影信号?(一)ICA应用:如何识别伪影信号?(二)ICA应用:如何识别伪影信号?(三)MNE脑电数据预处理持续更新中……...
文章目录前言一、载入数据(Loading data)二、总结前言有关脑电图(EEG)的内容请看下面这篇文章。脑机接口专栏 | 利用黎曼几何分析EEG脑电信号(一)脑磁图(Magnetoencephalography),或简称MEG,是集低温超导、生物工程、电子工程、医学工程等二十一世纪尖端科学技术于一体,是无创伤性地探测大脑电磁生理信号的一种脑功能检测技术。在MEG 问世以前,只有EEG 能检测神







