logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

数据挖掘十大算法--K近邻算法

k-近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。一、基于实例的学习。1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。2

#数据挖掘#机器学习
数据挖掘十大经典算法--CART: 分类与回归树

一、决策树的类型 在数据挖掘中,决策树主要有两种类型:分类树 的输出是样本的类标。回归树 的输出是一个实数 (例如房子的价格,病人呆在医院的时间等)。术语分类和回归树 (CART) 包含了上述两种决策树, 最先由Breiman 等提出.分类树和回归树有些共同点和不同点—例如处理在何处分裂的问题。分类回归树(CART,Classification And Regressi

#数据挖掘
支持向量机(四)-- 核函数

一、核函数的引入问题1:SVM显然是线性分类器,但数据如果根本就线性不可分怎么办?解决方案1:数据在原始空间(称为输入空间)线性不可分,但是映射到高维空间(称为特征空间)后很可能就线性可分了。问题2:映射到高维空间同时带来一个问题:在高维空间上求解一个带约束的优化问题显然比在低维空间上计算量要大得多,这就是所谓的“维数灾难”。解决方案2:于是就引入了“核

#机器学习#支持向量机
数据挖掘学习笔记之人工神经网络(一)

由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受到了生物学的启发,因为生物的学习系统是由相互连接的神经元(ne

数据挖掘十大算法----EM算法(最大期望算法)

概念在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,

#数据挖掘#机器学习
机器学习中的有监督学习,无监督学习,半监督学习

在机器学习(Machine learning)领域,主要有三类不同的学习方法:监督学习(Supervised learning)、非监督学习(Unsupervised learning)、半监督学习(Semi-supervised learning),监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类。非监督学习:直接

#机器学习#数据结构
机器学习与数据挖掘-logistic回归及手写识别实例的实现

本文主要介绍logistic回归相关知识点和一个手写识别的例子实现一、logistic回归介绍:logistic回归算法很简单,这里简单介绍一下:1、和线性回归做一个简单的对比下图就是一个简单的线性回归实例,简单一点就是一个线性方程表示(就是用来描述自变量和因变量已经偏差的方程)2、logistic回归可以看到下图,很难找到一条线性方程能将他们很好的分开

#机器学习
数据挖掘学习笔记--决策树C4.5

在网上和教材上也看了有很多数据挖掘方面的很多知识,自己也学习很多,就准备把自己学习和别人分享的结合去总结下,以备以后自己回头看,看别人总还是比不上自己写点,及时有些不懂或者是没有必要。定义:分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出

#数据挖掘#机器学习#算法
数据挖掘学习笔记之人工神经网络(二)

多层网络和反向传播算法我们知道单个感知器仅能表示线性决策面。然而我们可以将许多的类似感知器的模型按照层次结构连接起来,这样就能表现出非线性决策的边界了,这也叫做多层感知器,重要的是怎么样学习多层感知器,这个问题有两个方面:1、 要学习网络结构;2、 要学习连接权值对于一个给定的网络有一个相当简单的算法来决定权值,这个算法叫做反向传播算法。反向传播算法所学习的多层网络能够

机器学习与数据挖掘-支持向量机(SVM)(一)

最近在看斯坦福大学的机器学习的公开课,

#数据挖掘#支持向量机
    共 23 条
  • 1
  • 2
  • 3
  • 请选择