logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

使用git把本地代码上传(更新)到github仓库指定分支下

1)默认已有github账号和仓库项目,并且项目下有多个分支;2)默认git工具已正确安装;3)在本地将要上传的代码(or文件)的文件夹下空白处右键,右键会出现两个新选项,分别为Git Gui Here,Git Bash Here,这里我们选择Git Bash Here,进入如下界面LightGBM+LR即为我的项目名;4)初始化本地仓库#如果之前有初始化 init 需要删除命令: rm -rf

文章图片
#git#github
YOLOv5训练自己的数据集(超详细完整版)

一.Requirements本教程所用环境:代码版本V3.0,源码下载地址:https://github.com/ultralytics/yolov5.gitPytorch:1.6.0Cuda:10.1Python:3.7官方要求Python>=3.8 and PyTorch>=1.6.二. 准备自己的数据集(VOC格式)1.在yolov5目录下创建paper_data文件夹(名字可以

#深度学习#python#pytorch
YOLOv5训练自己的数据集(超详细完整版)

一.Requirements本教程所用环境:代码版本V3.0,源码下载地址:https://github.com/ultralytics/yolov5.gitPytorch:1.6.0Cuda:10.1Python:3.7官方要求Python>=3.8 and PyTorch>=1.6.二. 准备自己的数据集(VOC格式)1.在yolov5目录下创建paper_data文件夹(名字可以

#深度学习#python#pytorch
python 将labelme标注的json文件批量转为txt文件

功能说明将labelme标注的json文件中的坐标和label信息提取到txt文件中注意:labelme标注时使用“polygon”即画点标注方式,不是“rectangle”和“circle”标注方式,每个点坐标包括x和y,所以总共输出8个坐标值和1个label值。json格式批量转换dir_json为json文件夹dir_txt为txt文件夹同级目录下创建json2txt.py文...

#python#深度学习
YOLOv5训练自己的数据集(超详细完整版)

一.Requirements本教程所用环境:代码版本V3.0,源码下载地址:https://github.com/ultralytics/yolov5.gitPytorch:1.6.0Cuda:10.1Python:3.7官方要求Python>=3.8 and PyTorch>=1.6.二. 准备自己的数据集(VOC格式)1.在yolov5目录下创建paper_data文件夹(名字可以

#深度学习#python#pytorch
python读取excel指定的列并将内容保存为txt内容

1.需要的python库pip install xlrd2.读取excel指定的列并将内容保存为txt内容代码如下:# coding:utf-8import xlrd# 读取excel文件需要的库def strs(row):values = ""for i in range(len(row)):if i == len(row) - 1:values = values + str(row[i])

#python
python opencv图片/线条细化(骨架提取)

骨架提取,也叫二值图像细化。这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。morphology子模块提供了两个函数用于骨架提取,分别是skeletonize()函数和medial_axis()函数。1)skeletonize()函数在模块:skimage.morphology.skeleton

#python#opencv#图像处理
python读取CSV文件并计算指定列的均值和方差

# -*- coding:utf-8 -*-import csvimport numpy as npwith open('data.csv') as csv_file:row = csv.reader(csv_file, delimiter='|')# 分隔符方式next(row)# 读取首行leftDataProp= []# 创建一个数组来存储数据# 读取除首行以后每一行的第41列数据,并将其加

#python#数据分析
python根据yolov5检测得到的txt文件,截取目标框图片并保存

yolov5在模型推理阶段,命令如下:python detect.py --weights runs/exp1/weights/best.pt --source inference/images/ --device 0 --save-txt该命令中save_txt选项用于生成结果的txt标注文件,会生成每张图片对应文件名的txt检测框信息文件,每个txt会生成一行一个目标的信息,信息包括类别序号、

#python#深度学习
YOLOv5训练自己的数据集(超详细完整版)

一.Requirements本教程所用环境:代码版本V3.0,源码下载地址:https://github.com/ultralytics/yolov5.gitPytorch:1.6.0Cuda:10.1Python:3.7官方要求Python>=3.8 and PyTorch>=1.6.二. 准备自己的数据集(VOC格式)1.在yolov5目录下创建paper_data文件夹(名字可以

#深度学习#python#pytorch
暂无文章信息