
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
我现在所做的工作,是为AI量化搭桥铺路,当前的技术路径中,实时数据获取免费、深度学习工具足够开放、并且代码完全开源,我希望能真正让大家使用较低的学习成本,就能开发属于自己的量化交易策略。

网络上已经有很多神经网络入门的视频和文章,不过很多都艰深且冗长,即使是所谓的小白教程也看得让人脑仁疼。本篇文章试图使用最简洁易懂的文字对一个典型神经网络做一个较为完整的介绍。力求读者在读完本篇文章后对神经网络能有一个清晰且全面的认识。任务描述如下图,我们已知四个数据点(1,1)(-1,1)(-1,-1)(1,-1),这四个点分别对应I~IV象限,如果这时候给我们...
按照本专栏的内容,我会带着大家从零开始逐渐实现对深度学习的全面了解和掌握。

上一篇神经网络15分钟快速入门!足够通俗易懂了吧文章中对两层神经网络进行了描述,从中我们知道神经网络的过程就是正向传播得到Loss值,再把Loss值反向传播,并对神经网络的参数进行更新。其中反向传播正是神经网络的要点所在。本篇将对反向传播的内容进行讲解,力求通俗,毕竟只有15分钟时间~一、链式法则在讲反向传播之前先讲一下链式法则。假设一个场景,一辆汽车20万元,要收10%的购置税,...
使用打板策略测试khquant框架

本文介绍了KPCA(Kernel Principal Component Analysis)的基本概念和应用。与PCA相比,KPCA使用核函数对数据进行映射,从而处理非线性问题,并能够更好地构造复杂的非线性分类器。本文通过两个例子,介绍了KPCA在图像分类和异常检测中的应用。本文还解释了KPCA和PCA在参数设置上的不同之处,帮助读者更好地理解和应用KPCA算法。

之前在测试单股订阅 subscribe_quote时,仅订阅了10只股票进行测试,测试发现这种订阅方式,由于每只股票数据都要单独触发一次回调函数,该过程变得有些低效。对于少量股票订阅该效率尚可,股票数量多了后,可能会带来不能接受的低效。对于非研投版的MiniQMT,单股订阅的上线是300只,那么就需要测试一下在订阅了300只股票时,单股订阅的实际表现了。

之前在测试单股订阅 subscribe_quote时,仅订阅了10只股票进行测试,测试发现这种订阅方式,由于每只股票数据都要单独触发一次回调函数,该过程变得有些低效。对于少量股票订阅该效率尚可,股票数量多了后,可能会带来不能接受的低效。对于非研投版的MiniQMT,单股订阅的上线是300只,那么就需要测试一下在订阅了300只股票时,单股订阅的实际表现了。

最佳方法:订阅全推行情 subscribe_whole_quote次选方法:单股订阅subscribe_quote也就是两种方式可兼具,根据订阅的股票数量和策略场景自由选择。其实所谓“订阅全推行情”,并不是一定要把沪深的股票全部订阅,是可以指定要订阅的股票代码的。

我现在所做的工作,是为AI量化搭桥铺路,当前的技术路径中,实时数据获取免费、深度学习工具足够开放、并且代码完全开源,我希望能真正让大家使用较低的学习成本,就能开发属于自己的量化交易策略。
