在智能体开发框架——Langgraph中的执行流程分析
智能体的基础是大模型的函数调用,而框架只是对其能力的封装。我们首先要明确一个概念,即智能体是基于大模型应用设计的一套机制,其本质是大模型提供的函数调用功能(function call),包括现在的MCP服务;而框架只是对这些原生能力的封装,便于开发人员进行功能开发,而不用去处理太多细节性问题。所以,在做大模型开发时,虽然要学好框架的使用,但更重要的是要搞明白智能体的运行机制,已经框架在其上做了哪些
“ 智能体的基础是大模型的函数调用,而框架只是对其能力的封装。”
我们首先要明确一个概念,即智能体是基于大模型应用设计的一套机制,其本质是大模型提供的函数调用功能(function call),包括现在的MCP服务;而框架只是对这些原生能力的封装,便于开发人员进行功能开发,而不用去处理太多细节性问题。
所以,在做大模型开发时,虽然要学好框架的使用,但更重要的是要搞明白智能体的运行机制,已经框架在其上做了哪些完善和增强。
Langgraph框架的运作流程
在Langgraph中的核心概念主要有三个——State(状态),Nodes(节点),Edges(边);其中状态的主要载体是StateGraph状态图,其作用是一个全局变量,用来保存智能体执行过程中的数据;而节点是一个个功能节点,比如说模型节点,工具节点等;而边应该叫做条件边,意思是根据边来判断下一个应该执行哪个节点。
简而言之:节点完成工作,边告诉下一步做什么,而State在节点和边中传递参数。
因此,Langgraph开发的智能体是一个基于节点和边为主体的整体,而其有两个特殊节点——start开始节点和end结束节点;所谓的开始节点是只智能体的入口,而结束节点是智能体的终止节点,其它节点则都属于功能节点。
在我们开发一个智能体的过程中,首先我们要指定开始节点和结束节点,然后再根据功能需求填充功能节点。
如下,添加节点和边,并编译图:
其中节点的执行过程是顺序的以及并行的,顺序的是指一个节点执行完毕之后,并把执行结果保存到State中;然后根据边再执行下一个节点或多个节点;之所以又是并行的原因是因为,一个节点执行完成之后可以根据边执行一个或多个下一个节点。
这里说起来可能有点绕,但Langgraph中确实支持多节点执行。
边定义了逻辑如何路由以及图如何决定停止。这是代理工作以及不同节点如何相互通信的重要组成部分
在Langgraph中边有多种类型,主要包括以下几种:
- 普通边:直接从一个节点到下一个节点。
- 条件边:调用一个函数来确定接下来要前往哪个(或哪些)节点。
- 入口点:当用户输入到达时,首先调用哪个节点。
- 条件入口点:调用一个函数来确定当用户输入到达时,首先调用哪个(或哪些)节点。
一个节点可以有多个出边。如果一个节点有多个出边,所有这些目标节点将在下一个超级步骤中并行执行,这就是可以多节点执行的原因。
Langgraph之所以强大的原因,还在于StateGraph状态图中,原因是因为在状态图中可以保存节点执行的所有中间结果;这样当智能体由于某种原因被迫中断时,依然可以根据状态图中的执行结果,随时恢复到当时的运行状态。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型实战项目&项目源码👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
为什么分享这些资料?
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
更多推荐
所有评论(0)