为什么 Graph RAG 比传统检索更牛:通往更丰富上下文答案的聪明路子

笔者觉得Graph RAG 绝对以后RAG的潮流。

传统 RAG 中 Top-K 检索的局限性

top-k retrieval 在 RAG 里基本不咋管用。

传统 RAG 方法靠挑出“k”个最相关的文本段或片段。这有点用,但如果你想要一个完整、连贯的故事,很快就显得不够用了。

想象一下,你在缩写一本传记,每章讲一个成就。如果你只挑最相关的几个,就会漏掉关键信息。

这就给你一个不完整的画面,生成的答案可能缺了重要的上下文或成就之间的联系。

来源:来自 https://x.com/akshay_pachaar

欢迎体验 Graph RAG:理解上下文的聪明方式

Graph RAG 一点也不传统。

它不是直接用最高的 k 个部分,而是基于源文本构建一个相互关联的 graph,展示关键人物和他们的联系。

举个例子,如果你总结一个人的生平,Graph RAG 会建一个完整的 graph,里面的人(假设叫 P)跟所有成就都连起来。这个过程的厉害之处在于,它能通过识别和保持信息之间的关系,呈现完整的画面,这些关系在其他方式里可能会丢掉。

来源:来自 https://x.com/akshay_pachaar

Graph 构建

收集实体和它们的关系
Graph RAG 的关键步骤是从文档里建一个 graph。通常用一个 LLM(大型语言模型)读文本,找出重要的东西,比如人、地点或成就,然后标注它们怎么关联。

在我们的传记例子中,graph 以人(P)为中心,所有的成就像周围的点一样辐射出去。也就是说,即使有些信息不是最核心的,也会被加到 graph 里。因此,系统能捕捉完整的上下文,为构建最终总结打下更扎实的基础。

来源:来自 https://x.com/akshay_pachaar

Graph 遍历

获取完整的上下文
graph 建好后,系统会进行 graph traversal。它从核心主体(P)开始,遍历单跳关系,也就是单个成就。

在这个过程中,系统一次性收集所有相关的上下文。Naive RAG 可能会在 top 结果处截断,但 Graph RAG 确保所有相关信息都被考虑。

结果就是一个覆盖主体生活关键事实的摘要,什么都没漏。

来源:来自 https://x.com/akshay_pachaar

基于 Graph 的数据检索提升思考能力

Graph RAG 不仅能获取更多信息,还以 LLMs 更容易理解的形式呈现信息。大型语言模型天生就擅长处理关联和结构化的信息。

通过以 graph 形式呈现信息,系统让模型能清楚看到联系,生成更好、更完整的答案。

这种结构化的形式帮助模型关联一个人生活中的事件或任何复杂故事,降低漏掉关键细节的可能性,输出完整且有意义的答案。

大模型算是目前当之无愧最火的一个方向了,算是新时代的风口!有小伙伴觉得,作为新领域、新方向人才需求必然相当大,与之相应的人才缺乏、人才竞争自然也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业呢?是不是就暂时能抵抗35岁中年危机呢?

答案当然是这样,大模型必然是新风口!

那如何学习大模型 ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

但现在很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习路线完善出来!

在这里插入图片描述

在这个版本当中:

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型路线+学习教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全咨料,放心领取)👈

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源

在这里插入图片描述

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码免费领取

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全资料,放心领取)👈

Logo

为武汉地区的开发者提供学习、交流和合作的平台。社区聚集了众多技术爱好者和专业人士,涵盖了多个领域,包括人工智能、大数据、云计算、区块链等。社区定期举办技术分享、培训和活动,为开发者提供更多的学习和交流机会。

更多推荐