GitHub 上 6 万人收藏!RAG 引擎让知识库活起来,大模型入门到精通,收藏这篇就足够了!
RAGFlow 这个开源 RAG 引擎能让你的知识库活起来,现在已经获得了 60K 的 Star。
刚刚逛 GitHub 的时候,发现了一个超火的开源项目。
RAGFlow 这个开源 RAG 引擎能让你的知识库活起来,现在已经获得了 60K 的 Star。
它是为个人或企业准备的 RAG 工作流神器。
RAG **(检索增强生成)**技术可以让 AI 大模型生成答案之前访问外部知识库,从而提高答案的相关性、准确性和时效性,并减少“幻觉”等问题。
公司里海量的文档、合同、报告堆在网盘或服务器里,想找点关键信息,要么大海捞针,要么问同事也说不清具体在哪份文件的哪一页。
RAGFlow 就是为了解决这些问题而生的。
01
项目简介
RAGFlow是一个开源的、强大的 RAG 引擎。
简单来说,它能让 AI 大模型变得更懂你公司的内部资料,回答问题时不再是凭空想象,而是基于你上传的真实文件,并且能「有理有据」地告诉你答案是从哪来的。
输出准确答案的同时提供关键信息所在的原文,并且支持你点击溯源,直接定位到原始文档的具体位置。
这大大降低了 AI 瞎编乱造问题,让答案更可信。
① 深度理解复杂文档
不只是文本,它能读懂各种格式:Word, PPT, Excel, PDF(包括扫描件)、图片、网页、TXT等。
市面上常见的文档格式它都能处理。
就算你上传的是扫描的合同、带表格的报告,它也能努力从中提取有用的信息。这得益于它的「深度文档理解」能力。
而且它能把大文档切成更小的、有逻辑的「知识块」。更棒的是,这个过程你还能看到甚至手动调整,确保切分得合理,让后续的问答更精准。
下面这个图,就是 RAGFlow 整个工作流程。
② RAG 工作流
看上面这个图,RAGFlow 提供了一套几乎「全自动」的 RAG 工作流程,从个人使用到大型企业都能支持。
你可以自由选择搭配不同的大语言模型(比如 OpenAI GPT-4o, 百度文心一言,火山方舟,DeepSeek,百川等)和向量模型。
它经过了优化,即使你的知识库非常大(无限上下”),也能快速找到关键信息。
02
如何部署
RAGFlow 推荐使用 Docker 来部署,对硬件要求不算特别高:
CPU:至少 4 核、内存:至少 16 GB、硬盘:至少 50 GB、软件:Docker (>=24.0.0) 和 Docker Compose (>= v2.26.1)
部署步骤在 README 里写得很清楚:
① 确保系统设置:
调整一个叫 vm.max_map_count
的系统参数,不小于 262144:。
② 克隆代码:
git clone https://github.com/infiniflow/ragflow.git
③ 一键启动:
进入 docker
目录,运行 docker compose -f docker-compose-CN.yml up -d
命令。
它会自动下载镜像并启动所有需要的服务(包括数据库、向量库等)。
④ 等待启动完成:
用 docker logs
命令查看日志,看到服务器成功启动的提示。
⑤ 登录配置:
在浏览器访问你的服务器 IP,首次登录后,需要在配置文件里填入你选择的大模型(如 OpenAI)的 API Key。
⑥ 开用:上传文档,开始智能问答吧。
大模型算是目前当之无愧最火的一个方向了,算是新时代的风口!有小伙伴觉得,作为新领域、新方向
人才需求必然相当大,与之相应的人才缺乏、人才竞争自然也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业
呢?是不是就暂时能抵抗35岁中年危机呢?
答案当然是这样,大模型必然是新风口!
那如何学习大模型 ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:
最先掌握AI的人,将会比较晚掌握AI的人有竞争优势。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
但现在很多想入行大模型的人苦于现在网上的大模型老课程老教材
,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程
,深挖痛点并持续修改了近100余次
后,终于把整个AI大模型的学习路线完善出来!
在这个版本当中:
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型路线+学习教程已经给大家整理并打包分享出来
, 😝有需要的小伙伴,可以 扫描下方二维码领取
🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源
已经整理打包,有需要的小伙伴可以微信扫描下方二维码
,免费领取

为武汉地区的开发者提供学习、交流和合作的平台。社区聚集了众多技术爱好者和专业人士,涵盖了多个领域,包括人工智能、大数据、云计算、区块链等。社区定期举办技术分享、培训和活动,为开发者提供更多的学习和交流机会。
更多推荐
所有评论(0)