基础环境准备

本人使用的是Windows10专业版22H2版本,已经安装了Python3.10,CUDA11.8版本,miniconda3。
硬件采用联想R9000P,AMD R7 5800H,16G内存,RTX3060 6G。

安装依赖

# 使用conda安装激活环境
conda create -n Langchain-Chatchat python=3.10
conda activate Langchain-Chatchat
# 拉取仓库
git clone https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录
cd Langchain-Chatchat
# 安装全部依赖
pip install -r requirements.txt

默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。

此项目分为LLM服务,API服务和WebUI服务,可单独根据运行需求安装依赖包。

如果只需运行 LLM服务和API服务,可执行:

pip install -r requirements_api.txt

如果只需运行 WebUI服务,可执行:

pip install -r requirements_webui.txt

注:使用 langchain.document_loaders.UnstructuredFileLoader 进行 .docx 等格式非结构化文件接入时,可能需要依据文档进行其他依赖包的安装,请参考 langchain 文档

下载模型

Langchain-Chatchat支持的开源 LLM 与 Embedding 模型,如果使用在线LLM服务,如OpenAI的API,则请直接查看下一节。

如果需要本地或离线LLM服务,则需要下载模型,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。

因为我的显卡为RTX3060,只有6G的显存,所以我使用的 LLM 模型 THUDM/chatglm2-6b-int4 与 Embedding 模型 moka-ai/m3e-base
下载模型需要先安装Git LFS,然后运行

git clone https://huggingface.co/THUDM/chatglm2-6b-int4
git clone https://huggingface.co/moka-ai/m3e-base

如果你的网络不好,下载很慢,chatglm2-6b相关模型,推荐以下的方式
1.仅从Huggingface上下载模型实现,不下载LFS模型文件

# 只获取仓库本身,而不获取任何 LFS 对象
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm2-6b-int4

2.从清华云盘下载模型参数文件,放到本地chatglm2-6b仓库下
image

修改配置项

修改模型相关参数配置文件

复制一份模型相关参数配置模板文件 configs/model_config.py.example,并重命名为 model_config.py

  • 修改本地LLM模型存储路径。
    如果使用本地LLM模型,请确认已下载至本地的 LLM 模型本地存储路径写在 llm_model_dict 对应模型的 local_model_path 属性中,如:
llm_model_dict={
    "chatglm2-6b-int4": {
        "local_model_path": "D:\Langchain-Chatchat\chatglm2-6b-int4",  # "THUDM/chatglm2-6b-int4",
        "api_base_url": "http://localhost:8888/v1",  # "URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
        "api_key": "EMPTY"
    },
}

默认模板中没有提供llm_model_dict中,没有chatglm2-6b-int4模型,需要自己添加。

  • 修改在线LLM服务接口相关参数
    如果使用在线LLM服务,类OpenAi的API,需在llm_model_dict的gpt-3.5-turbo模型,修改对应的API地址和环境变量中的KEY,或新增对应的模型对象。
llm_model_dict={
    "gpt-3.5-turbo": {
        "local_model_path": "gpt-3.5-turbo",
        "api_base_url": "https://api.openai.com/v1",
        "api_key": os.environ.get("OPENAI_API_KEY")
    },
}

  • 修改使用的LLM模型名称
    根据上述新增或修改的模型名称,修改LLM_MODEL为使用的模型名称
# LLM 名称
LLM_MODEL = "chatglm2-6b-int4"

  • 修改embedding模型存储路径
    请确认已下载至本地的 Embedding 模型本地存储路径写在 embedding_model_dict 对应模型属性中,如:
embedding_model_dict = {
    "m3e-base": "D:\Langchain-Chatchat\m3e-base",
}

  • 其他修改项,可根据配置文件中的注释,自行进行修改。
修改服务相关参数配置文件

复制服务相关参数配置模板文件 configs/server_config.py.example,并重命名为 server_config.py。

  • 修改服务绑定的IP和端口
    根据实际情况,修改DEFAULT_BIND_HOST属性,改为需要绑定的服务IP
# 各服务器默认绑定host
DEFAULT_BIND_HOST = "10.0.21.161"

知识库初始化

如果您是第一次运行本项目,知识库尚未建立,或者配置文件中的知识库类型、Embedding模型发生变化,需要以下命令初始化或重建知识库:

python init_database.py --recreate-vs

启动服务

启用LLM服务

如果启动在线的API服务(如 OPENAI 的 API 接口),则无需启动 LLM 服务,如需使用开源模型进行本地部署,需首先启动 LLM 服务,参照项目部署手册,LLM服务启动方式有三种,我们只选择其中之一即可,这里采用的是基于多进程脚本 llm_api.py 启动 LLM 服务
在项目根目录下,执行 server/llm_api.py 脚本启动 LLM 模型服务:

python server/llm_api.py

启用API服务

执行server/api.py 脚本启动 API 服务

python server/api.py

启动 API 服务后,可访问 localhost:7861 或 {API 所在服务器 IP}:7861 FastAPI 自动生成的 docs 进行接口查看与测试。
image

启用webui服务

启动 API 服务后,执行 webui.py 启动 Web UI 服务(默认使用端口 8501)

streamlit run webui.py

使用 Langchain-Chatchat 主题色启动 Web UI 服务(默认使用端口 8501)

streamlit run webui.py --theme.base "light" --theme.primaryColor "#165dff" --theme.secondaryBackgroundColor "#f5f5f5" --theme.textColor "#000000"

或使用以下命令指定启动 Web UI 服务并指定端口号

streamlit run webui.py --server.port 666

启动成功进行访问

image

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

Logo

更多推荐