在这里插入图片描述

37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手试试多做实验,不管成功与否,都会记录下来——小小的进步或是搞不掂的问题,希望能够抛砖引玉。

【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验七十一:HX1838红外无线遥控套件红外扩展模块(遥控器+接收板)

在这里插入图片描述

知识点:红外线、红外遥控和红外管元件
一、红外线(Infrared)
1、概念——红外线是频率介于微波与可见光之间的电磁波,波长在760nm(纳米)~1mm(毫米)之间。它是频率比红光低的不可见光。高于绝对零度(0K,即-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。含热能,太阳的热量主要通过红外线传到地球。如图所示,我们人体也是个放射体,放射的波长也是远红外线;气功治病也是来自于远红外线。人类自古以来,虽不了解远红外线的存在,但是在生活中却懂得使用远红外线。

在这里插入图片描述
例如利用沙浴、温泉浴来疗养,用的原理就是远红外线。栗子用沙来炒更香甜可口;地瓜用土块、石块来闷,外皮未焦内部已熟;这道理也是来自远红外线。用砂锅炖煮,食物更好吃,也是因为远红外线。我们把红光之外的辐射叫做红外线(紫光之外是紫外线),肉眼不可见。

2、频谱——红外线是太阳光线中众多不可见光线中的一种,由英国科学家赫歇尔于1800年发现,又称为红外热辐射,热作用强。他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒介。英语为infrared(缩写为IR),前缀infra-意为意为“低于,在…下”。 太阳光谱上红外线的频率低于可见光线,波长为 1000μm~0.75μm。红外线可分为三部分,即近红外线,波长为 (32.5)μm~(10.75)μm 之间;中红外线,波长为(4025)μm~(32.5)μm 之间;远红外线,波长为1500μm~(25~40)μm 之间。

在这里插入图片描述
在这里插入图片描述
3、红外技术(Infrared Technique)
研究红外辐射的产生、传播、转化、测量及其应用的技术科学。通常人们将其划分为近、中、远红外三部分。近红外指波长为0.75~3.0微米;中红外指波长为3.0~20微米;远红外则指波长为20~1000微米。在光谱学中,波段的划分方法尚不统一,也有人将0.75~3.0微米、3.0~40微米和40~1000微米作为近红外、中红外和远红外波段。另外,由于大气对红外辐射的吸收,只留下三个重要的"窗口"区,即1~3微米、3~5微米和8~13微米可让红外辐射通过,因而在军事应用上,又分别将这三个波段称为近红外、中红外和远红外。红外技术的主要特点有:
(1)稳定性好:运用模拟传输方式,并非运用数字信号传输,所以几乎没有任何相似的信号对它产生干扰。
(2)私密性强:由于红外线的波长较短,对障碍物的衍射能力差,所以适合应用在进行短距离无线通讯。正因为如此,红外传输具有很强的私密性,比如我们在自己家使用红外遥控器时,邻居家的电器是不会受到控制影响的,所以遥控器的选材会优先选材红外线穿透的PC材料。
(3)成本低廉:红外传输技术已非常成熟,上下游产业链也极为发达,相对于蓝牙、Wifi等无线传输技术,在成本上有明显优势。

4、红外线应用
(1)红外线开关:红外线开关有主动式和被动式。主动式红外线开关由红外发射管和接收管组成探头,当接收管接收到发射管发出的红外线时,灯关闭;人体通过挡住红外线时,灯开启。被动式红外线开关是将人体作为红外线源(人体温度通常高于周围环境温度),红外线辐射被检测到时,开启照明灯。还有常见的红外感应龙头也是应用了这种原理。
(2)医疗保健:在红外线区域中,对人体最有益的是4 μm~ 14 μm波段,它有着孕育宇宙生命生长的神奇能量,所有动、植物的生存、繁殖,都是在红外线这个特定的波长下才得以进行,因此许多专家、学者称之为“生育光线”。远红外纺织品是近年来新兴的一种精密陶瓷粉经特殊加工制成,具有活化组织细胞、促进血液循环和改善微循环、提高免疫力、加强新陈代谢、消炎、除臭、止痒、抑菌等功能。
(3)遥控器:不少家用电器都配有红外线遥控装置.当遥控器与红外接收端口排成直线,左右偏差不超过15度时,效果最好。
(4)防盗装置:由红外线发射机和红外接收机组成.红外线发射机发射的红外线光束构成了一道人眼看不见的封锁线,当有人穿越或阻挡红外线时,接收机将会启动报警主机,报警主机收到信号后立即发出警报。
(5)红外遥感:在漆黑的夜晚应用红外遥感设备可以探测各种矿藏。我国利用红外遥感照片,调查了地热资源和放射性矿藏等资源。
(6)红外侦察:侦察卫星携带红外成像设备可获得更多地面目标的情报信息,并能识别伪装目标和在夜间对地面的军事行动进行监视;导弹预警卫星利用红外探测器可探测到导弹发射时发动机尾焰的红外辐射并发出警报,为拦截来袭导弹提供一定的预警时间。
(7)红外制导:红外制导就是利用目标本身的红外辐射来引导导弹自动接近目标,以提高命中率。红外线在航空、航天、军事装备遥控遥感等高科技领域和加热、保温、食品烤制、取暖、医疗保健等日常生活领域都得到广泛的应用;以各种气体为热源的红外加热技术已被广泛采用,全新红外线光波辐射加热燃气灶应运而生。

在这里插入图片描述
二、红外遥控(Infrared Remote Control )
1、概念——红外线遥控是目前使用最广泛的一种通信和遥控手段。红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机和手机系统中。因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。

红外线遥控是利用近红外光传送遥控指令的,波长为0.76um1.5um。用近红外作为遥控光源,是因为红外发射器件(红外发光管)与红外接收器件(光敏二极管、三极管及光电池)的发光与受光峰值波长一般为0.8um0.94um,在近红外光波段内,二者的光谱正好重合,能够很好地匹配,可以获得较高的传输效率及较高的可靠性。

2、基本原理——红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送后置放大器。
(1)发射机一般由指令键(或操作杆)、指令编码系统、调制电路、驱动电路、发射电路等几部分组成。当按下指令键或推动操作杆时,指令编码电路产生所需的指令编码信号,指令编码信号对载波进行调制,再由驱动电路进行功率放大后由发射电路向外发射经调制定的指令编码信号。
(2)接收电路一般由接收电路、放大电路、调制电路、指令译码电路、驱动电路、执行电路(机构)等几部分组成。接收电路将发射器发出的已调制的编码指令信号接收下来,并进行放大后送解调电路,解调电路将已调制的指令编码信号解调出来,即还原为编码信号。指令译码器将编码指令信号进行译码,最后由驱动电路来驱动执行电路实现各种指令的操作控制(机构)。

在这里插入图片描述
3、红外遥控编码——
应用中的各种红外遥控系统的原理都大同小异,区别只是在于各系统的信号编码格式不同。
红外遥控发射器组成了键扫描、编码、发射电路。当按下遥控器上任一按键时,TC9012即产生一串脉冲编码。遥控编码脉冲对 40kHz 载波进行脉冲幅度调制(PAM)后便形成遥控信号,经驱动电路由红外发射管发射出去。红外遥控接收头接收到调制后的遥控信号,经前置放大、限幅放大、带通滤波、峰值检波和波形整形,从而解调出与输入遥控信号反相的遥控脉冲。一次按键动作的遥控编码信息为 32 位串行二进制码。对于二进制信号“0”,一个脉冲占 1.2ms;对于二进制信号“1”,一个脉冲占 2.4ms,而每一脉冲内低电平均为 0.6ms。从起始标志到 32 位编码脉冲发完大约需80ms,此后遥控信号维持高电平。若按键未释放,则从起始标志起每隔 108ms 发出 3 个脉冲的重复标志。

在这里插入图片描述
在 32 位的编码脉冲中,前 16 位码不随按键的不同而变化,我们称之为用户码。它是为了表示特定用户而设置的一个辨识标志,以区别不同机种和不同用户发射的遥控信号,防止误操作。后 16 位码随着按键的不同而改变,我们就是要读取这 16 位按键编码,经解码得到按键键号,转而执行相应控制动作。那么,不同的按键编码脉冲是怎样和遥控器上不同的按键一一对应的呢?我们借助于逻辑分析仪记录下来遥控器上每一个按键的编码脉冲序列,破译出了各按键的编码。截取 16位键码的 8 位(比如后 8 位)就可达到识别按键的目的。当然,要加强遥控系统的抗干扰能力,还需接收全 16 位键码甚至 16 位用户码加以识别。

4、红外遥控解码——
红外遥控接收头解调出的编码是串行二进制码,包含着遥控器按键信息。但它还不便于CPU 读取识别,因此需要先对这些串行二进制码进行解码。下面所讲的红外遥控信号解码电路,它主要包括遥控编码脉冲串并转换电路与 PLD 解码电路。

在这里插入图片描述
遥控编码脉冲的串并转换如下所述: 红外遥控接收头解调出的遥控编码脉冲经一非门反相后引入计数器 4020 的复位端(RST),4020 的脚 10(CP)端引入 1MHz 计数脉冲。遥控信号(已反相)中每一正脉冲到来时其高电平对 4020 复位,经过 0.6ms 遥控信号变为低电平,4020 复位结束,开始以 1MHz 的频率计数,直到下一个正脉冲到来时为止。二进制码“0”每一脉冲周期低电平时间为 0.6ms,二进制码“1”每一脉冲周期低电平时间为 1.8ms,4020 的 Q11 端即可以区分二进制码“0”或“1”。每一遥控编码正脉冲上升沿到来时,若 Q11 端为“1”,说明前一位遥控码为“1”;若 Q11端为“0”,说明前一位遥控码为“0”。

将 4020 的 Q11 端作为 74HCS9S 的串行移位输入端(SER),便可在每一个遥控编码脉冲上升沿到来时并在 4020 复位之前,将 74HC595 中的数据沿 Q0 到 Q7 方向依次移一位,且4020 的 Q11 端数据移入 74HC595 的 Q0 端。对于一组遥控编码脉冲,共有 33 次上升沿(包括起标志),而 74HC595 仅为 8 位移位寄存器,所以移位的最终结果,只有遥控编码脉冲的最后 8 位保留在 74HC595 中。当一组遥控编码脉冲(反相后)来到时,其起始标志的上跳沿触发了双单稳 74HC123的 1B,在 1Q 上产生了一个宽度为 120ms 的正脉冲。1Q 同时又触发了 74HC123 的 2B,在产生一个宽度为 80ms 的负脉冲,1Q 和相与后作为锁存信号送至 74HC595 的 RCLK 端,即一组遥控编码脉冲到来 80ms 后,产生一个锁存信号。此时 74HC595 已经移过了一组遥控码,芯片中保留的是最后 8 位遥控码,锁存信号将这最后 8 位遥控码锁存 。

5、应用范围——由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计家用电器的红外线遥控器时,不必要像无线电遥控器那样,每套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰邻居的家用电器),所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方便。由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。

三、红外发射管(Infrared Light Emitting Diode)
1、红外发射管是由红外发光二极管组成发光体,用红外辐射效率高的材料(常用砷化镓)制成PN结,正向偏压向PN结注入电流激发红外光,其光谱功率分布为中心波长830~950nm。发光二极管表现是正温度系数,电流越大温度越高,温度越高电流越大,LED红外二极管的功率和电流大小有关,但正向电流超过最大额定值时,红外二极管发射功率反而下降。

在这里插入图片描述
2、原理——
红外发射管也称红外线发射二极管,属于发光二极管。它是可以将电能直接转换成近红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光电开关及遥控发射电路中。红外线发射管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装。红外线发射管也称红外线发射二极管,由红外发光二级管组成发光体。红外发射二级管由红外辐射效率高的材料(常用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料)制成PN结,外加正向偏压向PN结注入电流激发红外光。光谱功率分布为中心波长830~950nm,半峰带宽约40nm左右,它是窄带分布,为普通CCD黑白摄像机可感受的范围。其最大的优点是可以完全无红暴,(采用940~950nm波长红外管)或仅有微弱红暴(红暴为有可见红光)和寿命长。

红外发光二极管的发射功率用辐照度μW/cm2或者mW/m2表示。一般来说,其红外辐射功率与正向工作电流成正比,但在接近正向电流的最大额定值时,器件的温度因电流的热耗而上升,使光发射功率下降。红外二极管电流过小,将影响其辐射功率的发挥,但工作电流过大将影响其寿命,甚至使红外二极管烧毁。当电压越过正向阈值电压(约1.0V左右)电流开始流动,而且是一很陡直的曲线,表明其工作电流对工作电压十分敏感。因此要求工作电压准确、稳定,否则影响辐射功率的发挥及其可靠性。辐射功率随环境温度的升高 ( 包括其本身的发热所产生的环境温度升高 ) 会使其辐射功率下降。红外灯特别是远距离红外灯,热耗是设计和选择时应注意的问题。红外二极管的最大辐射强度一般在光轴的正前方,并随辐射方向与光轴夹角的增加而减小。辐射强度为最大值的50[%]的角度称为半强度辐射角。不同封装工艺型号的红外发光二极管的辐射角度有所不同。

3、红外发射管的检测——
(1)正、负极性的判别:红外发光二极管多采用透明树脂封装,管心下部有一个浅盘,管内电极宽大的为负极,而电极窄小的为正极。也可从管身形状和引脚的长短来判断。通常,靠近管身侧向小平面的电极为负极,另一端引脚为正极。长引脚为正极,短引脚为负极。
(2)性能好坏的测量:用万用表:10k档测量红外发光管有正、反向电阻。正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ(用10k档测量,反向电阻大于200 kΩ)。若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。若测得正、反向电阻值均为无穷大,则说明该二极管已开路损坏。若测得的反向电阻值远远小于500kΩ,则说明该二极管已漏电损坏。 简介:红外线是一种电磁波,波长介于微波与可见光之间(波长介于0.75-1.4微米),红外线发射管通常也叫红外线发射二极管,英文名称是:Infrared LED 。红外线发射管是一种直接将电能转化成近红外光的电子元器件,其封装材料,发光原理与普通的发光二极管相似,只是使用的半导体材料不同。

四、红外接收头(Infrared receiver)
1、红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的,这样的目的是为了提高接收的灵敏度。

在这里插入图片描述
2、VS1838和HX1838——
均为一体化红外接收头,两者的区别主要表现在接收距离上有些不同。
(1)VS1838参数如下——工作电压:2.7-5.5V,接收距离:18-20M,VS1838具有高灵敏度,抗光、电磁干扰能力强等特性。广泛应该于机顶盒、DVD、AV、TV、空调等,是高档电器的理想选择。
(2)HX1838参数如下——工作电压:2.7~5.5V,工作电流:1.4mA,距离:15M,频率:38K,角度:±45°,HX1838具有宽电压适应、低功耗、高灵敏度、优良的抗干扰特性;广泛应用于家用电器、空调、玩具等红外遥控接收。

在这里插入图片描述
3、功能方框图

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Logo

瓜分20万奖金 获得内推名额 丰厚实物奖励 易参与易上手

更多推荐