K8S核心网络插件-Flannel的部署04

k8s虽然设计了网络模型,然后将实现方式交给了CNI网络插件,而CNI网络插件的主要目的,就是实现POD资源能够跨宿主机进行通信

常见的网络插件有flannel,calico,canal,但是最简单的flannel已经完全满足我们的要求,故不在考虑其他网络插件

网络插件Flannel介绍:https://www.kubernetes.org.cn/3682.html

1 flannel功能概述

1.1 flannel运转流程

  1. 首先
    flannel利用Kubernetes API或者etcd用于存储整个集群的网络配置,其中最主要的内容为设置集群的网络地址空间。
    例如,设定整个集群内所有容器的IP都取自网段“10.1.0.0/16”。
  2. 接着
    flannel在每个主机中运行flanneld作为agent,它会为所在主机从集群的网络地址空间中,获取一个小的网段subnet,本主机内所有容器的IP地址都将从中分配。
    例如,设定本主机内所有容器的IP地址网段“10.1.2.0/24”。
  3. 然后
    flanneld再将本主机获取的subnet以及用于主机间通信的Public IP,同样通过kubernetes API或者etcd存储起来。
  4. 最后
    flannel利用各种backend mechanism,例如udp,vxlan等等,跨主机转发容器间的网络流量,完成容器间的跨主机通信。

1.2 flannel的网络模型

1.2.1 flannel支持3种网络模型

  1. host-gw网关模型
  1. {"Network": "xxx", "Backend": {"Type": "host-gw"}}

主要用于宿主机在同网段的情况下POD间的通信,即不跨网段通信.
此时flannel的功能很简单,就是在每个宿主机上创建了一条通网其他宿主机的网关路由
完全没有性能损耗,效率极高

  1. vxlan隧道模型
  1. {"Network": "xxx", "Backend": {"Type": "vxlan"}}

主要用于宿主机不在同网段的情况下POD间通信,即跨网段通信.
此时flannel会在宿主机上创建一个flannel.1的虚拟网卡,用于和其他宿主机间建立VXLAN隧道
跨宿主机通信时,需要经由flannel.1设备封包、解包,因此效率不高

  1. 混合模型
  1. {"Network": "xxx", "Backend": {"Type": "vxlan","Directrouting": true}}

在既有同网段宿主机,又有跨网段宿主机的情况下,选择混合模式
flannel会根据通信双方的网段情况,自动选择是走网关路由通信还是通过VXLAN隧道通信

1.2.2 实际工作中的模型选择

很多人不推荐部署K8S的使用的flannel做网络插件,不推荐的原因是是flannel性能不高,然而

  1. flannel性能不高是指它的VXLAN隧道模型,而不是gw模型
  2. 规划K8S集群的时候,应规划多个K8S集群来管理不同的业务
  3. 同一个K8S集群的宿主机,就应该规划到同一个网段
  4. 既然是同一个网段的宿主机通信,使用的就应该是gw模型
  5. gw模型只是创建了网关路由,通信效率极高
  6. 因此,建议工作中使用flannel,且用gw模型

2. 部署flannel插件

2.1 etcd中写入网络信息

以下操作在任意etcd节点中执行都可以

/usr/local/etcd/etcdctl set /coreos.com/network/config '{"Network": "172.7.0.0/16", "Backend": {"Type": "host-gw"}}'
# 查看结果
[root@server02 ~]# /usr/local/etcd/etcdctl get /coreos.com/network/config

{"Network": "172.7.0.0/16", "Backend": {"Type": "host-gw"}}

2.2 部署准备

2.2.1 下载软件

wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz
mkdir /usr/local/flannel-v0.11.0
tar xf flannel-v0.11.0-linux-amd64.tar.gz -C /usr/local/flannel-v0.11.0/
ln -s /usr/local/flannel-v0.11.0/ /usr/local/flannel

2.2.2 拷贝证书

因为要和apiserver通信,所以要配置client证书,当然ca公钥自不必说

cd /usr/local/flannel
mkdir cert
scp 10.11.0.210:/opt/certs/ca.pem         cert/ 
scp 10.11.0.210:/opt/certs/client.pem     cert/ 
scp 10.11.0.210:/opt/certs/client-key.pem cert/ 

2.2.3 配置子网信息

# vim /usr/local/flannel/subnet.env

FLANNEL_NETWORK=172.7.0.0/16
FLANNEL_SUBNET=172.7.207.1/24
FLANNEL_MTU=1500
FLANNEL_IPMASQ=false

注意:subnet子网网段信息,每个宿主机都要修改

2.3 启动flannel服务

2.3.1 创建flannel启动脚本

# vim /usr/local/flannel/flanneld.sh

#!/bin/sh
./flanneld \
  --public-ip=10.11.0.207 \
  --etcd-endpoints=https://10.11.0.207:2379,https://10.11.0.208:2379,https://10.11.0.209:2379 \
  --etcd-keyfile=./cert/client-key.pem \
  --etcd-certfile=./cert/client.pem \
  --etcd-cafile=./cert/ca.pem \
  --iface=eth0 \
  --subnet-file=./subnet.env \
  --healthz-port=2401

# 授权

chmod u+x /usr/local/flannel/flanneld.sh

注意:
public-ip为节点IP,注意按需修改
iface为网卡,若本机网卡不是eth0,注意修改

2.3.2 创建supervisor启动脚本

# vim etc/supervisord.d/flannel.ini

[program:flanneld]
command=/bin/bash /usr/local/flannel/flanneld.sh
numprocs=1
directory=/usr/local/flannel
autostart=true
autorestart=true
startsecs=30
startretries=3
exitcodes=0,2
stopsignal=QUIT
stopwaitsecs=10
user=root
redirect_stderr=true
stdout_logfile=/data/logs/flanneld/flanneld.stdout.log
stdout_logfile_maxbytes=64MB
stdout_logfile_backups=4
stdout_capture_maxbytes=1MB
;子进程还有子进程,需要添加这个参数,避免产生孤儿进程
killasgroup=true
stopasgroup=true

supervisor的各项配置不再备注,有需要的看K8S二进制安装中的备注

2.3.3 启动flannel服务并验证

启动服务

mkdir -p /data/logs/flanneld

supervisorctl update

supervisorctl status

将配置好的其中一台flannel拷贝到另外一个节点,修改配置并启动即可

验证路由

# route -n|egrep -i '172.7|des'

验证通信结果

架构原理:

之所以能够通信,是因为flannel添加了静态路由

实验:

将flannel的网络模型变更为vxlan

# /usr/local/etcd/etcdctl rm /coreos.com/network/config
# /usr/local/etcd/etcdctl get /coreos.com/network/config
Error:  100: Key not found (/coreos.com/network/config) [12]
# /usr/local/etcd/etcdctl set /coreos.com/network/config '{"Network": "172.7.0.0/16", "Backend": {"Type": "VxLAN"}}'
# /usr/local/etcd/etcdctl get /coreos.com/network/config

重启flannel进程

# supervisorctl restart flanneld:*

实际在操作的过程中发现在设置成vxlan以后,再次重新调整回来后网络不通了,路由什么的配置也都在,发现 flanneld1:1 这个网卡一直存在,于是重启了两台kubectl主机,然后发现etcd不通,于是 iptables -F,重启docker,再次设置 host-gw ,重启etcd,flanneld,问题解决

3 优化iptables规则

3.1 前因后果

3.1.1 优化原因说明

我们使用的是gw网络模型,而这个网络模型只是创建了一条到其他宿主机下POD网络的路由信息.因而我们可以猜想:

  1. 从外网访问到B宿主机中的POD,源IP应该是外网IP
  2. 从A宿主机访问B宿主机中的POD,源IP应该是A宿主机的IP
  3. 从A的POD-A01中,访问B中的POD,源IP应该是POD-A01的容器IP
    此情形可以想象是一个路由器下的2个不同网段的交换机下的设备通过路由器(gw)通信

然后遗憾的是:

  • 前两条毫无疑问成立
  • 第3条理应成立,但实际不成立

不成立的原因是:

  1. Docker容器的跨网络隔离与通信,借助了iptables的机制
  2. 因此虽然K8S我们使用了ipvs调度,但是宿主机上还是有iptalbes规则
  3. 而docker默认生成的iptables规则为:
    若数据出网前,先判断出网设备是不是本机docker0设备(容器网络)
    如果不是的话,则进行SNAT转换后再出网,具体规则如下
  4. # iptables-save |grep -i postrouting|grep docker0

-A POSTROUTING -s 172.7.207.0/24 ! -o docker0 -j MASQUERADE

由于gw模式产生的数据,是从eth0流出,因而不在此规则过滤范围内

  1. 就导致此跨宿主机之间的POD通信,使用了该条SNAT规则

解决办法是:

  • 修改此IPTABLES规则,增加过滤目标:过滤目的地是宿主机网段的流量

3.1.2 问题复现

  1. 在 0.207 宿主机中,访问172.7.208.2

curl 172.7.208.2

    1. 在 0.207 宿主中和进入容器中分别访问172.7.22.2

查看 0.208 宿主机上启动的nginx容器日志

[root@server03 etcd]# kubectl logs nginx-ds-ncmbf --tail=2
10.11.0.207 - - [03/Sep/2020:02:22:23 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.29.0" "-"
172.7.208.2 - - [03/Sep/2020:02:22:34 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.64.0" "-"

第一条日志为对端宿主机访问日志
第二条日志为对端容器访问日志
可以看出源IP是宿主机的IP,和本机器中 容器 的IP地址

3.2 具体优化过程

3.2.1 先查看iptables规则

[root@server02 etcd]# iptables-save |grep -i postrouting |grep docker0
-A POSTROUTING -s 172.7.207.0/24 ! -o docker0 -j MASQUERADE

3.2.2 安装iptables并修改规则(需要在kubectl的所有节点中操作才有效)

yum install iptables-services -y

# 删除之前的规则

[root@server02 etcd]# iptables -t nat -D POSTROUTING -s 172.7.207.0/24 ! -o docker0 -j MASQUERADE

# 重新添加规则:即 如果目的是  源头是 172.7.207.0 目标是 172.7.0.0 则不作地址伪装

[root@server02 etcd]# iptables -t nat -I POSTROUTING -s 172.7.207.0/24 ! -d 172.7.0.0/16 ! -o docker0 -j MASQUERADE

# 验证规则并保存配置

[root@server02 etcd]# iptables-save | grep -i postrouting|grep docker0

-A POSTROUTING -s 172.7.207.0/24 ! -d 172.7.0.0/16 ! -o docker0 -j MASQUERADE

[root@server02 etcd]# iptables-save > /etc/sysconfig/iptables

最终的效果:容器之间互相访问的时候获取的ip是容器的内部ip,而不是伪装后的IP地址

3.2.3 注意: 如果docker重启后需要再次确保该规则生效

docker服务重启后,会再次增加该规则,要注意在每次重启docker服务后,删除该规则
验证:

修改后会影响到docker原本的iptables链的规则,所以需要重启docker服务

[root@hdss7-21 ~]# systemctl restart docker

[root@hdss7-21 ~]# iptables-save |grep -i postrouting|grep docker0

-A POSTROUTING -s 172.7.21.0/24 ! -o docker0 -j MASQUERADE

-A POSTROUTING -s 172.7.21.0/24 ! -d 172.7.0.0/16 ! -o docker0 -j MASQUERADE

# 可以用iptables-restore重新应用iptables规则,也可以直接再删

~]# iptables-restore /etc/sysconfig/iptables

~]# iptables-save |grep -i postrouting|grep docker0

-A POSTROUTING -s 172.7.21.0/24 ! -d 172.7.0.0/16 ! -o docker0 -j MASQUERADE

3.2.4 结果验证

# 对端启动容器并访问

[root@hdss7-21 ~]# docker run --rm -it busybox  sh

/ # wget 172.7.22.2

# 本端验证日志

[root@hdss7-22 ~]# kubectl logs nginx-ds-j777c --tail=1

172.7.21.3 - - [xxxx] "GET / HTTP/1.1" 200 612 "-" "Wget" "-"

容器内部之间通信要看到真实的pod IP地址

安装iptables-services 服务,然后删除 reject 规则,优化伪装规则

这样就可以做到docker之间,k8s内部系统是没有做伪装的

Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐