
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
我们知道 CPU 做计算靠的是 RAM,GPU 做计算靠的是 VRAM(Video Random Access Memory),VRAM 是 GPU 的专用内存。苹果的 MPS(Metal Performance Shaders)扩展了 PyTorch 框架,可以作为 PyTorch 的后端加速 GPU 训练,它提供了在 Mac 上设置和运行操作的脚本和功能,MPS 通过针对每个 Metal GP
前端时间我写了一个Android相册库Album,当时我在做测试的时候发现,用Picasso或者Glide时,当列表达到上千条时,滑动起来就会卡,但是换成Fresco后一点都不卡了,而且Fresco做到的几个内置效果让我欣喜若狂,所以我把我的使用总结记录下来。
总的来说,我个人比较推荐TensorFlow和PyTorch,它们都是完整的深度学习框架,支持广泛的应用,并且它们的社区和工具都在不断发展。Caffe在某些特定的领域如计算机视觉中仍然是一个高效可靠的选择,尽管它的流行度可能不如前两者。而Keras提供了一个用户友好的接口,使得深度学习更加容易上手,是学习和快速开发的首选。
其实本文题目更合适叫做《Android 绑定任意线程到任意 CPU》,其范围也是涵盖了题目的,但是不能体现其最大价值性能优化,因此还是缩小了涵盖范围,但是读完本文你还是可以做到 Android 绑定任意线程到任意 CPU 的。
我们知道 CPU 做计算靠的是 RAM,GPU 做计算靠的是 VRAM(Video Random Access Memory),VRAM 是 GPU 的专用内存。苹果的 MPS(Metal Performance Shaders)扩展了 PyTorch 框架,可以作为 PyTorch 的后端加速 GPU 训练,它提供了在 Mac 上设置和运行操作的脚本和功能,MPS 通过针对每个 Metal GP
我们知道 CPU 做计算靠的是 RAM,GPU 做计算靠的是 VRAM(Video Random Access Memory),VRAM 是 GPU 的专用内存。苹果的 MPS(Metal Performance Shaders)扩展了 PyTorch 框架,可以作为 PyTorch 的后端加速 GPU 训练,它提供了在 Mac 上设置和运行操作的脚本和功能,MPS 通过针对每个 Metal GP
总的来说,我个人比较推荐TensorFlow和PyTorch,它们都是完整的深度学习框架,支持广泛的应用,并且它们的社区和工具都在不断发展。Caffe在某些特定的领域如计算机视觉中仍然是一个高效可靠的选择,尽管它的流行度可能不如前两者。而Keras提供了一个用户友好的接口,使得深度学习更加容易上手,是学习和快速开发的首选。
总的来说,我个人比较推荐TensorFlow和PyTorch,它们都是完整的深度学习框架,支持广泛的应用,并且它们的社区和工具都在不断发展。Caffe在某些特定的领域如计算机视觉中仍然是一个高效可靠的选择,尽管它的流行度可能不如前两者。而Keras提供了一个用户友好的接口,使得深度学习更加容易上手,是学习和快速开发的首选。
我们知道 CPU 做计算靠的是 RAM,GPU 做计算靠的是 VRAM(Video Random Access Memory),VRAM 是 GPU 的专用内存。苹果的 MPS(Metal Performance Shaders)扩展了 PyTorch 框架,可以作为 PyTorch 的后端加速 GPU 训练,它提供了在 Mac 上设置和运行操作的脚本和功能,MPS 通过针对每个 Metal GP
本文主要帮助读者理解 HTTP 的协作原理、HTTP 相关的各层协议,在服务端和客户端的架构设计和一些优化的技巧,本文中主要讲述逻辑思想和协议远离,会使用部分 Java 代码,但会有详细的讲解,非开发应该也读的明白。个人实现过一款WebServe...







