
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
主要步骤:准备车牌单个字符图像作为神经网络分类器的训练数据,越多越好。当然需要对每幅图像提取特征,这里使用的是水平和垂直累计直方图和缩小后的图像信息。获取车牌图像,这里的车牌图像已经完成抠图,并且是灰度图像。将车牌图像中每个字符分割成单一图像(OCR类实现)。提取分割出的字符图像特征信息,并使用分类识别字符(OCR类实现)。 程序运行过程:
所谓细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架。骨架,可以理解为物体的中轴,例如一个长方形的骨架是它的长方向上的中轴线;正方形的骨架是它的中心点;圆的骨架是它的圆心,直线的骨架是它自身,孤立点的骨架也是自身。得到了骨架,就相当于突出物体的主要结构和形状信息,去除了多余信息,根据这些信息可以实现图像上特征点的检测,如端点,交叉点和拐点。下面先介绍经
有关于自编码器的原理,请参考博客http://blog.csdn.net/xukaiwen_2016/article/details/70767518;对于对其与原理熟悉的可以直接看下面代码。 首先是使用到的相关库,数学运算相关操作库Numpy和对数据进行预处理的模块Scikit-lean中的preprocessing,使用TensorFlow的MNIST作为
在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下。首先介绍原理部分。 通过一个图像分类问题介绍卷积神经网络是如何工作的。下面是卷积神经网络判断一个图片是否包含“儿童”的过程,包括四个步骤:图像输入(InputImage)→卷积(Convolution)→最大池化(MaxPooling)→全连接神经网络(Fully-ConnectedNeural
图像预处理是一个非常简单,通过提高训练数据的多样性,进而对训练模型的召回率,适应性有着非常大的提升作用。另外在训练时,需要更多的训练次数,比如说我对每张图片进行了一次旋转,那么训练次数就要提高一倍。也就是说训练集多样性增加,同时训练次数也要增加。代码:import tensorflow as tffrom scipy import miscimport numpy as np#