logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

机器学习-----有监督学习和无监督学习

通俗的理解有监督学习和无监督学习有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对样本集外的数据进行标记(分类)预测,相当于有明确的分类目标。有监督学习可分为回归和分类。通俗的来说:有监督学习就是训练样本的标记信息是已知的,我们完成一个分类任务时,我们是知道要分为哪些类的,只是对数据进行提取属性再直接分类就好。无监督学习:对没有概念标记(分类)的训练样本进行学习,以发现训练样本集中的

#机器学习
机器学习----流行学习(manifold learning)的通俗理解

流形学习(manifold learning)是一类借鉴了拓扑流行概念的降维方法,在降维时,若低维流行嵌入到高维空间中,则数据样本在高维空间的分布虽然看上去十分复杂,但在局部上仍具有欧式空间(对现实空间的规则抽象和推广)的性质。我们先来理解流形: 流形(manifold)是一般几何对象的总称,包括各种维度的曲线与曲面等,和一般的降维分析一样,流形学习是把一组在高维空间中的数据在低维空间中重新表示。

#机器学习
机器学习-----有监督学习和无监督学习

通俗的理解有监督学习和无监督学习有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对样本集外的数据进行标记(分类)预测,相当于有明确的分类目标。有监督学习可分为回归和分类。通俗的来说:有监督学习就是训练样本的标记信息是已知的,我们完成一个分类任务时,我们是知道要分为哪些类的,只是对数据进行提取属性再直接分类就好。无监督学习:对没有概念标记(分类)的训练样本进行学习,以发现训练样本集中的

#机器学习
机器学习----流行学习(manifold learning)的通俗理解

流形学习(manifold learning)是一类借鉴了拓扑流行概念的降维方法,在降维时,若低维流行嵌入到高维空间中,则数据样本在高维空间的分布虽然看上去十分复杂,但在局部上仍具有欧式空间(对现实空间的规则抽象和推广)的性质。我们先来理解流形: 流形(manifold)是一般几何对象的总称,包括各种维度的曲线与曲面等,和一般的降维分析一样,流形学习是把一组在高维空间中的数据在低维空间中重新表示。

#机器学习
机器学习十大算法实现代码汇总(python)----线性回归、逻辑回归、决策树、支持向量机、朴素贝叶斯、K邻近算法、K-均值算法、随机森林、降低维度算法、梯度增强算法

目录引入一、线性回归 (Linear Regression)二、逻辑回归 (Logistic Regression)三、决策树 (Decision Tree)四、支持向量机算法 (Support Vector Machine,SVM)五、K邻近算法(K-Nearest Neighbors,KNN)六、K-均值算法(K-means)七、朴素贝叶斯 (Naive Bayes)八、随机森林 (Rando

#机器学习#算法
机器学习----线性回归 (Linear Regression)算法原理及python实现

线性回归(Linear Regression) 可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。线性模型:给定由d个属性描述的示例,线性模型试图学得一个通过属性的线性组合来进行预测的函数。f(x) = wTx+b线性回归试图学得一个线性模型以尽可能准确的预测实值输出标记,公式:f(xi) = wxi + b,使得f(xi) ≈ yi我们的任务就是求

#机器学习#算法
论文笔记----Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)

论文地址:https://arxiv.org/pdf/1704.05796.pdf论文提出了一种名为“Network Dissection”的通用框架,通过评估单个隐藏单元与一系列语义概念间的对应关系,来量化 CNN 隐藏表征的可解释性。这种方法利用大量的视觉概念数据集来评估每个中间卷积层隐藏单元的语义。这些带有语义的单元被赋予了大量的概念标签,这些概念包括物体、组成部分、场景、纹理、材料和颜色等

#神经网络
几种主要的神经网络----全连接神经网络、前馈神经网络、卷积神经网络、循环神经网络

几种主要的神经网络一、全连接神经网络二、前馈神经网络(Feedforward neural network,FNN)三、卷积神经网络(Convolutional Neural Network,CNN)四、循环神经网络(Recurrent neural network,RNN )一、全连接神经网络顾名思义,全连接神经网络中,对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第

#人工智能#深度学习#神经网络
机器学习----随机森林 (Random Forest)算法原理及python实现

随机森林是一个高度灵活的机器学习方法,利用多个决策树对样本进行训练、分类并预测,主要应用于回归和分类场景。在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择)。简单来说,随机森林就是对决策树的集成,但随机森林中决策树的分类特征是在所有特征中随机选择的。随机森林中有许多的分类树。我们要将一个输入样本进行分类,我们需要将输入样本输入到每

#机器学习#算法
    共 21 条
  • 1
  • 2
  • 3
  • 请选择