简介
该用户还未填写简介
擅长的技术栈
未填写擅长的技术栈
可提供的服务
暂无可提供的服务
【金融、量化系列】计算股票历史期望收益率(年化)、收益率标准差(年化)、夏普比率、以及股票之间月收益率的相关系数,并以夏普比率、相关系数为条件筛选股票
使用akshare获取股票数据,利用月度数据计算每只上证50成分股的股票历史期望收益率(年化)、收益率标准差(年化)、夏普比率、以及股票之间月收益率的相关系数,并以夏普比率、相关系数为条件筛选股票。挑选5只股票组成篮子,篮子股票必须满足下列三个条件: A)过去3年的夏普比率大于0.2; B)过去1年的夏普比率大于0.1; C)这5只股票彼此之间的相关系数之和最小。
【量化】一文整理所有日历效应,持股还是不持股过节清楚明了
日历效应(Calendar Effect)是指在特定的日期或时间段内,金融市场或经济活动中出现的统计上的规律或周期性现象。这些规律可能与特定日期、星期几、月份或季节等时间因素有关。根据众多研究者多年的研究总结,我们可以将日历效应划分为区间日历效应和时点日历效应两种。在这篇报告中我们将梳理关注度较高的日历效应,并总结每一个日历效应的重要属性,随后进行风格、行业和个股的日历效应梳理,接着基于日历效应建
【机器学习系列】【调参GridsearchCV】随机森林、GBDT、LightGBM和XGBoost调参顺序,外加一些加速调参的小技巧(主要介绍坐标下降)
本文将记录一下几个可以将模型参数分开进行调参的树形模型的调参顺序。以及几个能够加快调参速度的小技巧(主要介绍坐标下降)。(1)利用gridsearchcv的best_estimator_ 属性。(2)更改GridsearchcCV()参数cv。(3)使用 sklearn.model_selection.RandomizedSearchCV替代GridsearchCV。
到底了