
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
# 深度学习笔记: 稀疏自编码器
statsmodels是一个Python模块,它提供对许多不同统计模型估计的类和函数,并且可以进行统计测试和统计数据的探索。说实话,statsmodels这个词我总是记不住,但是国宝“熊猫”这个单词pandas我还是记得住的,因此每次我打开statsmodels的方式是:百度搜索pandas,然后进入pandas官网点击里面的documentation进入对应标签页面选择下方pand...
数据挖掘和机器学习是进行数据处理的非常有用的工具,当代的好多数据都使用这两种方法。但是这两种方法却包含很多模型和方法,对于初学者来说,面对这些模型总是无从下手。因此,后面的论述主要以处理数据的流程入手,把每个方法带入到数据处理的步骤中来讲,使得这些方法在数据处理中的具体位置有一个清晰的显示,有利于理解这些方法。
Python常用数据挖掘的工具包python对于数据处理非常有好的语言,比如常用的scikit-learn和scipy都可以用来进行机器学习和数据挖掘。同时为了使得结果可视化,Python还提供了非常好用的可视化工具包matplotlib和seaborn。使用Python进行层次聚类聚类对于机器学习和数据挖掘来说都是一个非常常用的的工具。其中层次聚类又以其显示效果和可解释效果好而在...
Linear Regression基本介绍线性回归,该标签下的函数主要处理线性模型,并且要求这些线性模型具有独立和恒等分布误差或者具有异方差或自相关的误差。该模块允许用普通最小二乘(OLS)、加权最小二乘(WLS)、广义最小二乘(GLS)和可行的广义最小二乘(p)误差进行估计。数学模型这一类模型假设如下方程:Y=Xβ+μ,其中μ∼N(0,Σ)Y=Xβ+μ,其中μ...
数据挖掘和机器学习是进行数据处理的非常有用的工具,当代的好多数据都使用这两种方法。但是这两种方法却包含很多模型和方法,对于初学者来说,面对这些模型总是无从下手。因此,后面的论述主要以处理数据的流程入手,把每个方法带入到数据处理的步骤中来讲,使得这些方法在数据处理中的具体位置有一个清晰的显示,有利于理解这些方法。
注:本文转载自https://github.com/exacity/simplified-deeplearning/blob/master/%E5%BE%AA%E7%8E%AF%E9%80%92%E5%BD%92%E7%BD%91%E7%BB%9C/LSTM.md因为github上的makedown格式显示的不够完全,看的非常不方便,因此放到CSDN上比较好查阅学习。LST...
注:本文转载自https://github.com/ysh329/Chinese-UFLDL-Tutorial因为github上的makedown格式显示的不够完全,看的非常不方便,因此放到CSDN上比较好查阅学习。
数据挖掘和机器学习是进行数据处理的非常有用的工具,当代的好多数据都使用这两种方法。但是这两种方法却包含很多模型和方法,对于初学者来说,面对这些模型总是无从下手。因此,后面的论述主要以处理数据的流程入手,把每个方法带入到数据处理的步骤中来讲,使得这些方法在数据处理中的具体位置有一个清晰的显示,有利于理解这些方法。







