logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

如何在多个GPU中训练非常大的模型?

中小模型:优先使用数据并行+混合精度超大模型:采用混合并行结合激活冲计算。

#人工智能
机器学习-基于KNN算法手动实现kd树

上一章我们将了,这一章我们加上kd树对它进行优化,下面先来讲讲kd树。KD 树(K-Dimensional Tree)是一种高效的K 维空间数据索引结构,主要用于最近邻搜索和范围搜索。

文章图片
#机器学习#算法#人工智能
一文解析大语言模型量化技术

特性INT8INT4FP16FP32​位数​8 bits4 bits16 bits32 bits​内存占用​1 字节/参数0.5 字节/参数2 字节/参数4 字节/参数​计算速度​极快(硬件加速)最快(理论)快慢​精度​中等(需量化)极低较低(3-4位有效)高(7位有效)​适用阶段​推理推理/边缘计算训练/推理训练​硬件支持​广泛(GPU/TPU)实验性(部分AI芯片)主流 GPU所有设备。

#语言模型#人工智能#自然语言处理
BertTokenizer.from_pretrained的讲解和使用

Hugging Face的方法是加载预训练BERT分词器的核心接口,支持多种配置和灵活使用。

#人工智能#深度学习
一口气看完从零到一构建transformer架构代码一:多头注意力机制

的形状兼容,通常在 Transformer 的自注意力或多头注意力机制中使用。这是 Transformer 自注意力机制的核心实现,适用于编码器、解码器或跨注意力场景。​,负责将输入向量线性变换并拆分为多个头的表示。的注意力分数矩阵,每个位置的值是。对应位置向量的点积。

文章图片
#transformer#深度学习#人工智能
如何在多个GPU中训练非常大的模型?

中小模型:优先使用数据并行+混合精度超大模型:采用混合并行结合激活冲计算。

#人工智能
BertTokenizer.from_pretrained的讲解和使用

Hugging Face的方法是加载预训练BERT分词器的核心接口,支持多种配置和灵活使用。

#人工智能#深度学习
到底了