
简介
该用户还未填写简介
擅长的技术栈
未填写擅长的技术栈
可提供的服务
暂无可提供的服务
神经网络的可解释性——Network Dissection: Quantifying Interpretability of Deep Visual Representations
本文是周博磊大神CVPR 2017年的文章,主要关注网络的可解释性。神经网络的可解释性一直是一个很有趣也很有用的东西。很多情况下大家都把神经网络作为一个黑箱来用,而近年来也有越来越多的工作希望能够探索神经网络到底学习到了什么,比如利用deconvolution进行可视化,周博磊去年的Learning Deep Features for Discriminative Localization等。
关于转置卷积(反卷积)的理解
本文地址:https://blog.csdn.net/isMarvellous/article/details/80087705,转载请注明出处。什么是转置卷积(反卷积)?转置卷积(Transposed Convolution)又称为反卷积(Deconvolution)。在PyTorch中可以使用torch.nn.ConvTranspose2d()来调用,在Caffe中也有对应的层deco...
生成学习算法(Generative Learning Algorithms)
今天我们来聊一聊生成学习算法,内容主要包括生成模型和判别模型的比较,以及生成学习算法的一个例子——高斯判别分析(Gaussian Discriminant Analysis, GDA)。1. 生成模型和判别模型 前面我们讨论的学习算法(线性回归、逻辑回归、softmax等)都有一个共同点,那就是我们都在想方设法求出p(y|x;θ)p(y|x;\theta),也就是说,给定特征x,我们直接求出y的
到底了







