logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

深度学习算法原理——Attention-Based BiLSTM

论文地址:Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification文章中提到使用双向的LSTM(Bidirectional LSTM)加上Attention的机制处理文本分类的相关问题,以解决CNN模型不适合学习长距离的语义信息的问题。1. 网络结构在Attention...

#机器学习#深度学习
深度学习算法原理——RCNN

相比较于图像分类来说,目标检测(Object Detection)不仅需要标记出图像中的物体(通常使用边框标记),同时需要指出该物体是什么。一般比较直观的想法包括以下的三个步骤:得到候选区域;提取候选区域的特征;对该候选区域分类;RCNN(Region with CNN features),又称为基于区域的卷积神经网络,也是基于上述的思路的一种目标检测的方法,基本的思路如下图所示:...

Embeddings from Language Models(ELMo)

1. 概述随着深度学习在NLP领域的发展,产生很多深度网络模型用于求解各类的NLP问题,在这众多的网络模型中,无疑都会使用到词向量的概念,这就不得不提及word2vec[1]词向量生成工具。从word2vec词向量工具的提出后,预训练的词向量成了众多NLP深度模型中的重要组成部分。然而传统的word2vec生成的词向量都是上下文无关的,其生成的词向量式固定,不会随着上下文的改变而改变,这种固定的词

#机器学习#深度学习
多目标建模算法PLE

为了解决多任务模型中普遍存在的负迁移和跷跷板现象,在MMoE模型的基础上提出了CGC模型,在共享专家的基础上增加了针对特定任务的专家网络,可以针对特定任务学习到独有的网络部分,从而避免任务之间的相互影响,同时为了进一步提升整体网络的泛化效果,在CGC的基础上通过堆叠Extraction Network构造了更深的网络结构,进一步提升多任务模型的学习效果。

#深度学习
生成对抗网络GAN

1. 概述生成对抗网络GAN(Generative adversarial nets)[1]是由Goodfellow等人于2014年提出的基于深度学习模型的生成框架,可用于多种生成任务。从名称也不难看出,在GAN中包括了两个部分,分别为”生成”和“对抗”,整两个部分也分别对应了两个网络,即生成网络(Generator)GGG和判别网络(Discriminator)DDD,为描述简单,以图像生成为例

#生成对抗网络#深度学习#计算机视觉
深度学习算法原理——LSTM

1. 概述在循环神经网络RNN一文中提及到了循环神经网络RNN存在长距离依赖的问题,长短期记忆(Long Short-Term Memory,LSTM)网络便是为了解决RNN中存在的梯度爆炸的问题而提出。在LSTM网络中,主要依靠引入“门”机制来控制信息的传播。2. 算法原理2.1. LSTM的网络结构LSTM的网络结构如下所示(图片来自参考文献):与循环神经网络RNN相比,LSTM的网络结构要复

#lstm
深度学习算法原理——LSTM

1. 概述在循环神经网络RNN一文中提及到了循环神经网络RNN存在长距离依赖的问题,长短期记忆(Long Short-Term Memory,LSTM)网络便是为了解决RNN中存在的梯度爆炸的问题而提出。在LSTM网络中,主要依靠引入“门”机制来控制信息的传播。2. 算法原理2.1. LSTM的网络结构LSTM的网络结构如下所示(图片来自参考文献):与循环神经网络RNN相比,LSTM的网络结构要复

#lstm
推荐系统中的常用算法——DeepWalk算法

参考文献Perozzi B, Alrfou R, Skiena S. DeepWalk: online learning of social representations[J]. 2014:701-710.DeepWalk源码《DeepWalk: Online Learning of Social Representations》笔记C实现的DeepWalk...

#深度学习
人脸检测和对齐算法MTCNN

在现如今再回过头来看MTCNN这个模型,无论是模型还是思路上都已经比较落后,但在当时的条件下,确实由于其较好的表现,在业界得到了很多的应用。回顾MTCNN算法,整体的框架是一个多任务的级联框架,同步对人脸检测和人脸对齐两个项目学习,并且在级联的框架中使用了三个卷积网络,并将这三个网络级联起来,一步一步对结果精修,使得能够得到最终理想的效果,同时,在训练的过程中使用到了在线困难样本挖掘的方法,进一步

#算法#计算机视觉#深度学习
淘宝搜索的向量召回算法MGDSPR

阿里的模型相对而言是相当复杂的,里面涉及到了大量的attention的计算,这会给在线任务带来巨大的压力。从原理上来说,低一点是对Query进行多粒度的分析,试图能够挖掘多粒度的语义信息。第二点是用户行为的挖掘,相当的复杂了。第三点是对相关性的控制,设立了独立的模块用于控制相关性。其他的如样本的选择,softmax中的温度参数等都差不太多。query侧进行了多粒度的语义分析,但item侧相对就简单

文章图片
#算法#机器学习#人工智能
    共 153 条
  • 1
  • 2
  • 3
  • 16
  • 请选择