Answer a question

Is there an explicit equivalent command in Python's matplotlib for Matlab's hold on? I'm trying to plot all my graphs on the same axes. Some graphs are generated inside a for loop, and these are plotted separately from su and sl:

import numpy as np
import matplotlib.pyplot as plt

for i in np.arange(1,5):
    z = 68 + 4 * np.random.randn(50)
    zm = np.cumsum(z) / range(1,len(z)+1)
    plt.plot(zm)
    plt.axis([0,50,60,80])

plt.show()

n = np.arange(1,51)
su = 68 + 4 / np.sqrt(n)
sl = 68 - 4 / np.sqrt(n)

plt.plot(n,su,n,sl)

plt.axis([0,50,60,80])
plt.show()

Answers

Just call plt.show() at the end:

import numpy as np
import matplotlib.pyplot as plt

plt.axis([0,50,60,80])
for i in np.arange(1,5):
    z = 68 + 4 * np.random.randn(50)
    zm = np.cumsum(z) / range(1,len(z)+1)
    plt.plot(zm)    

n = np.arange(1,51)
su = 68 + 4 / np.sqrt(n)
sl = 68 - 4 / np.sqrt(n)

plt.plot(n,su,n,sl)

plt.show()
Logo

Python社区为您提供最前沿的新闻资讯和知识内容

更多推荐