大数据技术框架
1. 简介 
大数据技术体系主要涉及方面:数据采集,数据处理,数据存储以及分布式协调服务;
数据采集:etl,kettle,flume
数据处理:离线处理hadoop,实时处理spark、storm、flink
数据存储:HBASE、hdfs。
数据仓库;hive
分布式协调服务:zookeeper

2.概述
ETL:
ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, ETL是BI(商业智能)项目重要的一个环节。


Kettle:
Kettle 是一款国外开源的 ETL 工具,纯 Java 编写,绿色无需安装,数据抽取高效稳定(数据迁移工具)。Kettle 中有两种脚本文件,transformation 和 job,transformation 完成针对数据的基础转换,job 则完成整个工作流的控制。

Kettle 中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出。

Kettle这个ETL工具集,它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述你想做什么,而不是你想怎么做。

Kettle家族目前包括4个产品:Spoon、Pan、CHEF、Kitchen。 

SPOON 允许你通过图形界面来设计ETL转换过程(Transformation)。 

PAN 允许你批量运行由Spoon设计的ETL转换 (例如使用一个时间调度器)。Pan是一个后台执行的程序,没有图形界面。 

CHEF 允许你创建任务(Job)。 任务通过允许每个转换,任务,脚本等等,更有利于自动化更新数据仓库的复杂工作。任务通过允许每个转换,任务,脚本等等。任务将会被检查,看看是否正确地运行了。 

KITCHEN 允许你批量使用由Chef设计的任务 (例如使用一个时间调度器)。KITCHEN也是一个后台运行的程序。


Flume:
Flume可以将应用产生的数据存储到任何集中存储器中,比如HDFS,HBase.
当收集数据的速度超过将写入数据的时候,也就是当收集信息遇到峰值时,这时候收集的信息非常大,甚至超过了系统的写入数据能力,这时候,Flume会在数据生产者和数据收容器间做出调整,保证其能够在两者之间提供平稳的数据.

提供上下文路由特征
Flume的管道是基于事务,保证了数据在传送和接收时的一致性.
Flume是可靠的,容错性高的,可升级的,易管理的,并且可定制的。

Hadoop:
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点 :
高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。
Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。


Spark:
Spark 主要有三个特点:
首先,高级 API 剥离了对集群本身的关注,Spark 应用开发者可以专注于应用所要做的计算本身。
其次,Spark 很快,支持交互式计算和复杂算法。
最后,Spark 是一个通用引擎,可用它来完成各种各样的运算,包括 SQL 查询、文本处理、机器学习等,而在 Spark 出现之前,我们一般需要学习各种各样的引擎来分别处理这些需求。

内存计算下,Spark 比 Hadoop 快100倍。
Spark 提供了大量的库,包括Spark Core、Spark SQL、Spark Streaming、MLlib、GraphX。 开发者可以在同一个应用程序中无缝组合使用这些库。
Spark 支持 Hadoop YARN,Apache Mesos,及其自带的独立集群管理器


storm:
storm可以实时处理消息和更新DB,对一个数据量进行持续的查询并返回客户端(持续计算),对一个耗资源的查询作实时并行化的处理(分布式方法调用,即DRPC),storm的这些基础API可以满足大量的场景。
可伸缩性高:  Storm的可伸缩性可以让storm每秒可以处理的消息量达到很高。扩展一个实时计算任务,你所需要做的就是加机器并且提高这个计算任务的并行度 。Storm使用ZooKeeper来协调集群内的各种配置使得Storm的集群可以很容易的扩展。
保证无数据丢失: 实时系统必须保证所有的数据被成功的处理。 那些会丢失数据的系统的适用场景非常窄, 而storm保证每一条消息都会被处理, 这一点和S4相比有巨大的反差。
异常健壮: storm集群非常容易管理,轮流重启节点不影响应用。
容错性好:在消息处理过程中出现异常, storm会进行重试
语言无关性: Storm的topology和消息处理组件(Bolt)可以用任何语言来定义, 这一点使得任何人都可以使用storm.

推荐系统(实时推荐,根据下单或加入购物车推荐相关商品)、金融系统、预警系统、网站统计(实时销量、流量统计,如淘宝双11效果图)、交通路况实时系统等等。

Flink:
Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。此外,Flink的运行时本身也支持迭代算法的执行。

HBase:
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:
HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile
HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HDFS:
Hadoop分布式文件系统(HDFS)是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File System)。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。HDFS是Apache Hadoop Core项目的一部分。
HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据。

HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。其中NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作;集群中的DataNode管理存储的数据。

hive:
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive是十分适合数据仓库的统计分析和Windows注册表文件。

hive 是一种底层封装了Hadoop 的数据仓库处理工具,使用类SQL 的hiveQL 语言实现数据查询,所有hive 的数据都存储在Hadoop 兼容的文件系统(例如,Amazon S3、HDFS)中。hive 在加载数据过程中不会对数据进行任何的修改,只是将数据移动到HDFS 中hive 设定的目录下,因此,hive 不支持对数据的改写和添加,所有的数据都是在加载的时候确定的。

hive中包含以下四类数据模型:表(Table)、外部表(External Table)、分区(Partition)、桶(Bucket)。

ZooKeeper:
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
ZooKeeper包含一个简单的原语集,提供Java和C的接口。
ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在$zookeeper_home\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。

Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐