📈 算法与建模领域的探索者 | 专注数据分析与智能模型设计
✨ 擅长算法、建模、数据分析
💡 matlab、python、仿真

✅ 具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)基于强化学习的公交信号优先控制核心技术

公交信号优先控制的核心在于通过动态调整信号配时方案,在保障社会车辆通行效率的同时,优先放行公交车辆。强化学习(RL)因其自适应决策能力成为该领域的研究热点,其技术框架包含以下关键要素:

状态空间设计
状态空间需综合反映交叉口的实时交通特征。典型设计包括:

image


(智能体与环境交互示意图:展示观察、动作、奖励的循环逻辑)

动作空间定义
动作空间需平衡控制灵活性与工程可行性:

奖励函数构建
奖励函数需权衡公交优先与社会车辆影响:


(2)单交叉口与多交叉口协同优化方法

单交叉口控制策略
针对孤立交叉口,Q-learning及其衍生算法(如Double DQN)可有效处理离散动作空间:

image


(多智能体协同框架:展示局部观测与全局奖励的协调机制)

多交叉口协同优化
面向干线协调场景,多智能体强化学习(MARL)展现优势:

  • 分布式决策架构:每个交叉口作为独立智能体,通过通信网络共享公交轨迹预测(eMARLIN-MM采用值分解网络实现联合训练)
  • 分层控制逻辑:上层优化相位差,下层调整单点绿灯时长(CTVH方法引入虚拟队列平衡社会车辆影响)
  • 跨模态协同:结合公交速度引导(如红绿灯建议速度)降低二次排队风险(Co-ST算法实现信号与车速联合控制)
import numpy as np
import tensorflow as tf
from collections import deque

class DQNAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size  # 包含公交数量、社会车辆数等
        self.action_size = action_size  # 绿灯延长/保持/切换
        self.memory = deque(maxlen=2000)
        self.gamma = 0.95
        self.epsilon = 1.0
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.model = self._build_model()

    def _build_model(self):
        model = tf.keras.Sequential([
            tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'),
            tf.keras.layers.Dense(24, activation='relu'),
            tf.keras.layers.Dense(self.action_size, activation='linear')
        ])
        model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(0.001))
        return model

    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return np.random.choice(self.action_size)
        act_values = self.model.predict(state, verbose=0)
        return np.argmax(act_values[0])

    def replay(self, batch_size):
        minibatch = np.random.choice(len(self.memory), batch_size)
        for i in minibatch:
            state, action, reward, next_state, done = self.memory[i]
            target = reward
            if not done:
                target = reward + self.gamma * np.amax(self.model.predict(next_state, verbose=0)[0])
            target_f = self.model.predict(state, verbose=0)
            target_f[0][action] = target
            self.model.fit(state, target_f, epochs=1, verbose=0)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

# 仿真环境交互示例
def run_simulation(env, agent, episodes):
    for e in range(episodes):
        state = env.reset()
        state = np.reshape(state, [1, agent.state_size])
        total_reward = 0
        while True:
            action = agent.act(state)
            next_state, reward, done, _ = env.step(action)
            next_state = np.reshape(next_state, [1, agent.state_size])
            agent.remember(state, action, reward, next_state, done)
            state = next_state
            total_reward += reward
            if done:
                print(f"Episode: {e}, Reward: {total_reward}")
                break
            if len(agent.memory) > 32:
                agent.replay(32)


如有问题,可以直接沟通

👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇

Logo

更多推荐