超越RAG:智能体如何让大模型能力更强、应用更广
摘要:RAG与智能体技术在大模型应用中各有特点。RAG通过检索外部数据单向增强模型输入,而智能体不仅能获取数据,还能通过工具与外部环境双向交互(如自主调用接口、下单等)。智能体功能更强大灵活,被称为"Agentic RAG",而RAG实现更简单。两者存在交集,但智能体应用范围更广,代表了更先进的大模型应用方向。
文章探讨了RAG与智能体技术在大模型应用中的关系。两者都可用于数据增强,但智能体能力更强、应用更广。RAG本质是通过检索从外部获取数据输入大模型,是单向数据增强;而智能体不仅能获取数据,还能通过工具与外部环境进行双向交互,自主选择调用不同工具获取数据。智能体可影响外部环境(如下单),RAG则不能。智能体有专业名称"Agentic RAG",代表了更强大、更灵活的大模型应用方向。
“ 智能体和RAG技术有交集,但智能体功能更强,应用范围更广。”
在大模型的应用场景中,RAG和智能体是其两个主要应用方向;在之前对RAG和智能体不够了解的时候,一直认为RAG技术和智能体技术完全是两个不同方向的应用场景。
但随着对RAG和智能体认识的加深,现在发现RAG和智能体有一定的重合部分;记得之前在一篇文章中看到过,意思大概是基于大模型构建的应用,本质是一种数据增强技术,原因就在于大模型的数据能力不足,需要依赖外部数据源。
而不论是RAG技术,还是智能体技术,实际上都可以给大模型做数据增强;但智能体的不仅仅只有数据增强的功能,其比RAG技术更加强大;比如说智能体可以通过调用工具的方式获取外部数据,但同样也可以通过工具与外部环境进行交互。
这里交互的意思是指,智能体不但可以通过工具获取外部数据以影响模型;同样,智能体也可以通过工具去影响外部环境;简单理解就是智能体与外部环境的交互是双向的,但RAG却无法做到这点,RAG与外部环境的交互只能是单向的。
RAG与智能体的区别
RAG的本质是什么?
RAG的本质就是通过检索的方式从外部资料中获取数据,然后再通过提示词的方式把这些数据输入到大模型,使得大模型能够根据这些外部数据来回答或总结问题。
但大模型并不会关心你外部数据从哪里来,以及怎么来;而数据的来源这些都是RAG需要考虑的问题。
传统的RAG技术是基于传统的数据检索技术,以及新兴的向量相似度检索技术来获取外部数据;但有了智能体之后,智能体能够通过工具自主决策调用外部接口来获取数据。
其优点是灵活度更高,以搜索引擎为例;在RAG中其实也可以使用搜索引擎,那就是在RAG后端直接把用户的问题当做参数,调用搜索引擎的接口获取结果。
但这种方式灵活度不够高,比如说如果有些数据是企业内部数据,只能通过查询数据库或者接口调用的方式获取数据;这时应该怎么办?
通过智能体能够很好的实现这个功能,原因就在于智能体能够自主选择调用那个工具;而RAG却不行,RAG即使使用工具也只能把工具写死到代码中,并且面对多个工具RAG就彻底的无能为力了。
所以说这就是智能体比RAG更加强大的地方,RAG能做的智能体也能做,RAG不能做的智能体还能做;只不过从成本角度考虑来说,RAG技术更简单,难度也更低。
那智能体能那些事情,而RAG不能做呢?
这个就是前面说的智能体对环境的影响是双向的,而RAG对环境的影响是单向的。
比如说,大模型可以通过理解用户意图,去京东或淘宝上下单买东西,这个就是智能体对外部环境的影响;而很明显,这一点对RAG技术来说,是完全无法做到的。
所以说,RAG技术和智能体技术存在交集,但智能体技术应用范围更广,能力更强。
而这种智能体也有一个专业的名字——Agentic RAG。
读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**
如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会!
👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。
你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
为什么要学习大模型?
数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
大模型学习路线汇总
整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
大模型实战项目&配套源码
光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
大模型学习必看书籍PDF
我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
大模型超全面试题汇总
在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
这些资料真的有用吗?
这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
👉获取方式:
😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!
更多推荐
所有评论(0)