本文系统综述了大语言模型中的检索-推理系统,分析了推理增强型RAG、RAG增强型推理及检索-推理协同范式三种架构,探讨它们如何解决大模型的知识幻觉与复杂推理不足问题。文章还讨论了未来挑战与发展方向,包括推理效率、检索效率、人机协作、智能体架构、多模态检索和可信度等,为构建更高效、多模态适应的检索-推理系统提供了重要参考。

  • 论文标题:Towards Agentic RAG with Deep Reasoning: ASurvey of RAG-Reasoning Systems in LLMs
  • 论文链接:https://arxiv.org/pdf/2507.09477
  • 项目地址:https://github.com/DavidZWZ/Awesome-RAG-Reasoning

01

推理增强型RAG

传统RAG先检索文档,再结合查询生成答案,但这类方法往往难以处理复杂推理。通过在检索、整合与生成各阶段融入推理能力,可提升信息匹配精度,减少幻觉,增强回答准确性。

(1)检索优化

检索优化利用推理来提高结果的相关性和质量。现有方法主要分为三类:

推理感知的查询重构

通过重构原始查询来更好地获取与推理相关的上下文。首先查询分解将复杂问题拆解为更简单的子查询;然后查询改写将模糊查询转化为更清晰的表述,部分研究采用强化学习训练改写模型以匹配生成器的推理需求;最后查询扩展通过思维链推理增强查询的语义丰富度。

检索策略与规划

检索优化的两大技术路线包括:采用推理模型预先生成完整检索蓝图的全局规划;采用单步预测机制动态判断是否需要检索的自适应决策

检索模型增强

现有研究通过两种方式增强检索器推理能力:利用知识图谱(GNN-RAG采用图神经网络编码知识图谱实现隐式多跳推理)或符号规则(RuleRAG)等结构化知识指导检索;或将CoT****显式推理与查询结合,提升多跳问答的中间知识召回。

(2)整合优化

通过引入推理机制来评估相关性并融合多源证据,从而避免无关内容干扰最终生成效果。其核心方法可分为两类:

相关性评估与过滤

通过深层次推理评估检索片段与查询的相关性。如SEER采用评估专家机制筛选高质量证据;Yoran等人使用NLI模型过滤非蕴含内容,并通过混合上下文微调LLM来抑制噪声干扰。

信息合成与融合

识别相关片段后,需将其融合为连贯证据集。BeamAggR基于概率推理聚合子问题答案组合;DualRAG通过推理增强查询渐进聚合信息;CRP-RAG构建推理图以处理节点级知识,生成前动态选择最佳知识路径。

(3)生成优化

传统RAG系统即便获取检索内容,仍会因缺乏推理生成不实内容。当下研究主要采用两种优化方案:

上下文感知合成策略

通过选择性上下文利用和构建显式推理路径来确保生成内容的相关性并降低噪声。

基于证据的生成控制

通过推理验证机制,确保输出紧扣检索证据。如:事实验证方法评估生成内容与证据的一致性;引用生成方法通过关联内容与来源提升可信度;忠实推理方法要求每一步均基于证据,避免引入未经验证信息。

02

RAG增强型推理

在推理过程中整合外部知识或上下文中的知识,有助于大语言模型减少幻觉并弥补逻辑漏洞。

(1)外部知识检索

通过整合网络内容、数据库信息和外部工具来增强推理能力,有效填补知识空白。定向检索技术将推理步骤锚定在已验证的外部证据上,使语言模型能够可靠处理复杂查询,显著提升事实准确性。

(2)上下文检索

利用模型的内部经验或从示例和训练数据中检索到的样例来引导推理。该方法提供相关范例,指导模型模仿推理模式,从而提升回答新问题时的准确性和逻辑连贯性。

03

检索-推理协同范式

许多现实问题(如开放域问答和科学发现)需迭代式检索与推理,使新证据不断优化推理,反之亦然。单次检索或推理难以充分支持复杂任务。通过多步交互式协同,系统可逐步提升信息相关性与查询理解。现有方法主要聚焦两个方向:

(1)推理工作流

推理工作流可分为基于链、基于树和基于图的结构,体现出从线性推理向多分支复杂推理范式的技术演进。

**基于链:**链式推理架构(如CoT)通过线性思维链进行推理,但仅依赖大语言模型的参数化知识,容易产生错误传播。为此,研究者通过在推理步骤间加入检索操作来优化,最新进展还引入了验证与过滤机制以提升鲁棒性。

**基于树:**通常采用“思维树”(ToT)或蒙特卡洛树搜索(MCTS)框架。ToT 将思维链扩展为显式构建确定性推理树,从而并行探索多条逻辑路径。相比之下,基于 MCTS 的方法采用概率树搜索,依据启发式概率动态优先探索高潜力路径。

**基于图:**Walk-on-Graph方法主要依赖图学习技术实现检索与推理的协同。相比之下,Think-on-Graph方法直接将图结构整合到大语言模型推理循环中,通过模型自主引导实现动态迭代的检索-推理过程。

(2)智能体编排

根据智能体架构分类,现有研究可划分为两大方向:

单智能体

单智能体系统将知识检索融入大语言模型的推理循环中,使其能够在解决问题的每一步动态查找信息,并在需要时主动寻找相关证据。

具体实现包括:使用提示策略使大模型显式交替执行推理和工具调用;通过基于指令或合成数据集的监督微调(SFT)方法;以及强化学习驱动,通过奖励信号优化智能体行为的方法(最近研究进一步推出在动态环境下及端到端的强化学习训练)。

多智能体

RAG与推理任务中的多智能体协作研究催生了两类典型架构:集中式架构(通过"工作者-管理者"模式整合集体智能)与分布式架构(利用角色专精智能体的互补能力)。

04

挑战与机遇

协同式检索-推理系统的未来研究致力于提升推理和检索能力,以满足现实世界对准确性、效率、可信度和用户对齐的需求。下面概述关键挑战与机遇:

推理效率:协同式检索-推理系统虽擅长复杂推理,但因迭代检索与多步推理易致显著延迟。未来需通过潜在推理、思维蒸馏、长度惩罚等策略优化推理效率,并探索模型压缩技术,发展高效的轻量级系统。

检索效率:在检索方面,需结合预算感知的查询规划与记忆感知的缓存机制,减少冗余访问;通过自适应检索控制,依据不确定性信号动态调整检索时机与规模,降低无效操作。这些技术推动系统从静态RAG向现实约束下的动态、自调节高效检索演进。

人机协作:检索-推理应用多具个性化,用户往往难以明确需求或处理结果。未来系统需建模不确定意图,支持迭代澄清,并设计可自适应用户水平与偏好的智能体。

智能体架构与能力:协同式检索-推理的核心是智能体架构,系统能自主分配角色并调用工具或检索策略。未来研究应聚焦于构建支持动态选工具、检索规划与自适应协同的智能体框架。

多模态检索:现有协同式检索-推理系统多限于文本任务,但实际应用亟需多模态内容的检索与融合。未来研究应增强多模态大模型的跨模态对齐与推理能力,发展混合模态思维链以支持现实交互,并构建统一的多模态检索器,实现对图像、表格、文本等异构数据的联合嵌入。

检索可信度:协同式检索-推理系统易受污染知识的攻击,确保检索可信对推理可靠性至关重要。水印等技术可提升可追溯性,但亟需更动态自适应的方法应对模型演进与新型攻击。不确定性量化与鲁棒生成已单独探索,未来应整合以增强系统可信与鲁棒性,并扩展基准至多维可信度评估。

读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**

如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会

👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。

你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
在这里插入图片描述

为什么要学习大模型?

数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
在这里插入图片描述

大模型学习路线汇总

整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
在这里插入图片描述

大模型实战项目&配套源码

光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
在这里插入图片描述

大模型学习必看书籍PDF

我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

大模型超全面试题汇总

在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
👉获取方式

😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!

Logo

更多推荐