
简介
该用户还未填写简介
擅长的技术栈
未填写擅长的技术栈
可提供的服务
暂无可提供的服务
快速部署:使用FastAPI构建大型语言模型——LLAMA2实战
【代码】快速部署:使用FastAPI构建大型语言模型——LLAMA2实战。

检索增强生成(RAG)生成实战(langchain+chatglm)
检索增强生成(RAG)是一个概念,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。这样,LLM 在生成更精确、更贴合上下文的答案的同时,也能有效减少产生误导性信息的可能。问题当下领先的大语言模型 (LLMs) 是基于大量数据训练的,目的是让它们掌握广泛的普遍知识,这些知识被储存在它们神经网络的权重(也就是参数记忆)里。但是,如果我们要求 LLM 生成的回答涉及到它训练数据之外的知识—

检索增强生成(RAG)生成实战(langchain+chatglm)
检索增强生成(RAG)是一个概念,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。这样,LLM 在生成更精确、更贴合上下文的答案的同时,也能有效减少产生误导性信息的可能。问题当下领先的大语言模型 (LLMs) 是基于大量数据训练的,目的是让它们掌握广泛的普遍知识,这些知识被储存在它们神经网络的权重(也就是参数记忆)里。但是,如果我们要求 LLM 生成的回答涉及到它训练数据之外的知识—

到底了