
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
目标检测算法从早期的暴力穷举逐步发展到基于深度学习的高效框架,如RCNN和SPPNet。RCNN通过候选区域和CNN结合,大幅提高了检测精度,但其多阶段训练过程复杂,耗时且占用大量磁盘空间。SPPNet的出现利用SPP层实现CNN层共享,显著提升了训练效率,启发了后续的Fast R-CNN等方法。然而,SPPNet仍需多阶段训练,效率提升有限。

目标检测算法从早期的暴力穷举逐步发展到基于深度学习的高效框架,如RCNN和SPPNet。RCNN通过候选区域和CNN结合,大幅提高了检测精度,但其多阶段训练过程复杂,耗时且占用大量磁盘空间。SPPNet的出现利用SPP层实现CNN层共享,显著提升了训练效率,启发了后续的Fast R-CNN等方法。然而,SPPNet仍需多阶段训练,效率提升有限。

DETR(DEtection TRansformer)是由Facebook AI提出的一种基于Transformer架构的端到端目标检测方法。它通过将目标检测建模为集合预测问题,摒弃了锚框设计和非极大值抑制(NMS)等复杂后处理步骤。DETR使用卷积神经网络提取图像特征,并将其通过位置编码转换为输入序列,送入Transformer的Encoder-Decoder结构。Decoder通过固定数量的目

本周看了一篇《DETRs Beat YOLOs on Real-time Object Detection》设计了一种高效的混合编码器,通过解耦尺度内交互和跨尺度融合来提高速度来快速处理多尺度特征;同时提出了不确定性最小查询选择来为解码器提供高质量的初始查询,从而提高准确率。此外,RT-DETR通过调整解码器的数量来适应各种场景而无需重新训练来支持灵活的速度调整。它不仅在速度和准确性上都优于之前先

本周阅读了一篇25年二月份发表于CVPR 的论文《Attention Distillation: A Unified Approach to Visual Characteristics Transfer》,论文开发了Attention Distillation引导采样,这是一种改进的分类器引导方法,将注意力蒸馏损失整合到去噪过程中,大大加快了合成速度,并支持广泛的视觉特征迁移和合成应用。最近扩散

聚类是无监督学习中的重要任务,旨在将数据集划分为若干个子集(簇),使得同一簇内的样本相似度高而不同簇间的样本相似度低。本周学习了聚类的性能度量指标,包括内部和外部指标,如Jaccard系数、Rand指数、DB指数等,并介绍了几种常见的距离计算方法。此外,深入学习了几种原型聚类算法:k均值、学习向量量化(LVQ)以及高斯混合模型(GMM),并以K-means算法为例,通过鸢尾花数据集进行了实战演示。

本文综述了监督学习中多种分类算法的核心概念与应用示例,强调了从线性模型到非线性核方法、支持向量机(SVM)及神经网络模型的演变。线性模型如普通最小二乘法和岭回归,通过优化误差和正则化策略处理简单至中等复杂度的数据分类。岭回归通过引入惩罚项提高模型在多重共线性数据上的稳定性。线性和二次判别分析(LDA/QDA)提供了解决分类问题的经典框架,尤其适合具有特定统计属性的数据分布。核岭回归和SVM引入核








