抑制 sklearn.metrics.plot_confusion_matrix 中的科学记数法
问题:抑制 sklearn.metrics.plot_confusion_matrix 中的科学记数法 我试图很好地绘制一个混淆矩阵,所以我在内置绘图混淆矩阵函数](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html#sklearn.metrics.plot_con
·
问题:抑制 sklearn.metrics.plot_confusion_matrix 中的科学记数法
我试图很好地绘制一个混淆矩阵,所以我在内置绘图混淆矩阵函数](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html#sklearn.metrics.plot_confusion_matrix)中遵循[scikit-learn 的更新版本 0.22。但是,我的混淆矩阵值的一个值是 153,但它在混淆矩阵图中显示为 1.5e+02:
根据scikit-learn 的文档,我发现了这个名为values_format
的参数,但我不知道如何操作这个参数,以便它可以抑制科学计数法。我的代码如下。
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix
# import some data to play with
X = pd.read_csv("datasets/X.csv")
y = pd.read_csv("datasets/y.csv")
class_names = ['Not Fraud (positive)', 'Fraud (negative)']
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),
("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
disp = plot_confusion_matrix(logreg, X_test, y_test,
display_labels=class_names,
cmap=plt.cm.Greens,
normalize=normalize, values_format = '{:.5f}'.format)
disp.ax_.set_title(title)
print(title)
print(disp.confusion_matrix)
plt.show()
解答
只需从您的调用参数声明中删除“.format”和 {} 括号:
disp = plot_confusion_matrix(logreg, X_test, y_test,
display_labels=class_names,
cmap=plt.cm.Greens,
normalize=normalize, values_format = '.5f')
此外,您可以使用'.5g'
来避免十进制 0
取自源
更多推荐
已为社区贡献126473条内容
所有评论(0)