一、HPA

HPA(Horizontal Pod Autoscaling)Pod 水平自动伸缩,Kubernetes 有一个 HPA 的资源,HPA 可以根据 CPU 利用率自动伸缩一个 Replication Controller、 Deployment 或者Replica Set 中的 Pod 数量。

(1)HPA 基于 Master 上的 kube-controller-manager 服务启动参数 --horizontal-pod-autoscaler-sync-period 定义的时长(默认为15秒),周期性的检测 Pod 的 CPU 使用率。

(2)HPA 与之前的 RC、Deployment 一样,也属于一种 Kubernetes 资源对象。通过追踪分析 RC 控制的所有目标 Pod 的负载变化情况, 来确定是否需要针对性地调整目标Pod的副本数,这是HPA的实现原理。

(3)metrics-server:集群插件组件,用于收集和聚合从每 kubelet 中提取的资源指标。API Server 提供 Metrics API 以供 HPA、VPA和 kubectl top 命令使用。Metrics Server 是 Metrics API 的参考实现。

二、HPA的部署运用

1、部署 metrics-server

上传components.yaml文件
kubectl apply -f components.yaml
kubectl top node
//创建用于测试的 Pod 资源,并设置请求资源为 cpu=200m
vim hpa-pod.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    run: php-apache
  name: php-apache
spec:
  replicas: 1
  selector:
    matchLabels:
      run: php-apache
  template:
    metadata:
      labels:
        run: php-apache
    spec:
      containers:
      - image: mirrorgooglecontainers/hpa-example
        name: php-apache
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80
        resources:
          requests:
            cpu: 200m
          limits:
            cpu: 500m
---
apiVersion: v1
kind: Service
metadata:
  name: php-apache
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    run: php-apache
	
	
kubectl apply -f hpa-pod.yaml
 
kubectl get pods

2、HPA伸缩

创建用于测试的pod

 kubectl create deployment hpa-deploy --image=nginx:1.14 --replicas=3 -o yaml >hpa-test.yaml
 
vim hpa-test.yaml
 
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: hpa-deploy
  name: hpa-deploy
  namespace: default
spec:
  replicas: 3
  selector:
    matchLabels:
      app: hpa-deploy
  template:
    metadata:
      labels:
        app: hpa-deploy
    spec:
      containers:
      - image: nginx:latest
        name: nginx-hpa
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80
        resources:
          requests:
            cpu: 200m
 
---
apiVersion: v1
kind: Service
metadata:
  name: hpa-deploy
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: hpa-deploy

创建HPA控制器,进行资源的限制,伸缩管理 

使用 kubectl autoscale 命令创建 HPA 控制器,设置 cpu 负载阈值为请求资源的 50%,指定最少负载节点数量为 1 个,最大负载节点数量为 10 个
 
kubectl autoscale deployment hpa-deploy  --cpu-percent=50 --min=1 --max=10

模拟进行死循环,并开启终端监视

三、命名空间的资源限制

apiVersion: v1
kind: ResourceQuota        #使用 ResourceQuota 资源类型
metadata:
  name: compute-resources
  namespace: spark-cluster  #指定命令空间
spec:
  hard:
    pods: "20"    #设置 Pod 数量最大值
    requests.cpu: "2"
    requests.memory: 1Gi
    limits.cpu: "4"
    limits.memory: 2Gi

配置对象数量配额限制

apiVersion: v1
kind: ResourceQuota
metadata:
  name: object-counts
  namespace: spark-cluster
spec:
  hard:
    configmaps: "10"
    persistentvolumeclaims: "4"		#设置 pvc 数量最大值
    replicationcontrollers: "20"    #设置 rc 数量最大值
    secrets: "10"
    services: "10"
    services.loadbalancers: "2"

总结:

HPA的工作原理:利用metrics-server组件定期的(默认为15秒)收集Pod资源的CPU或内存平均负载情况,根据HPA资源配置的CPU或内存的requests资源量阈值百分比来动态调整Pod的副本数量。
HPA扩容时,Pod副本数量上升会比较快;缩容时,Pod副本数量下降会比较慢(默认冷却时间为5m)

Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐