Flink k8s启动方式
Flink k8s启动方式通过docker启动镜像准备Session Cluster启动模式1. 设置docker容器建的通信连接2. 启动JobManager3. 启动TaskManager4.启动任务Job Cluster启动模式1. 设置docker容器建的通信连接2. 启动JobManager3. 启动TaskManger通过k8s启动1. 准备镜像1.1. 基于flink:1.11.2-
Flink k8s启动方式
通过docker启动
镜像准备
- 下载docker镜像
docker pull flink:1.11
- 修改镜像tag 为1.11.2-scala_2.11
docker tag flink:1.11 flink:1.11.2-scala_2.11
Session Cluster启动模式
Flink会话集群可用于运行多个作业。每个flink作业公用JobManager和TaskManger
1. 设置docker容器建的通信连接
docker network create flink-network
2. 启动JobManager
docker run \
--rm \
--name=jobmanager \
--network flink-network \
-p 8081:8081 \
--env FLINK_PROPERTIES="jobmanager.rpc.address: jobmanager" \
flink:1.11.2-scala_2.11 jobmanager
3. 启动TaskManager
docker run \
--rm \
--name=taskmanager \
--network flink-network \
--env FLINK_PROPERTIES="jobmanager.rpc.address: jobmanager" \
flink:1.11.2-scala_2.11 taskmanager
4.启动任务
本地环境,可通过访问flink管理后台,将作业运行主类,打成jar上传,并执行任务
地址:http://localhost:8081/
Job Cluster启动模式
Flink作业集群是运行单个作业的专用集群。每个filnk作业的JobManager和TaskManger隔离
1. 设置docker容器建的通信连接
docker network create flink-network
2. 启动JobManager
需要将Flink 需要执行任务的jar和所有依赖的lib,挂载到容器的/opt/flink/usrlib,这样在Flink 的JobManager在启动时,会根据指定的–job-classname,到target目录,加载Main类和运行环境。
本例中,将包含任务jar(flink.demo.word.WordCountMain)的目录:/tmp/flink/usrlib/artifacts1,挂载到容器的/opt/flink/usrlib/artifacts1目录
docker run \
--mount type=bind,src=/tmp/flink/usrlib/artifacts1,target=/opt/flink/usrlib/artifacts1 \
--mount type=bind,src=/tmp/flink/usrlib/artifacts2,target=/opt/flink/usrlib/artifacts2 \
--rm \
--env FLINK_PROPERTIES="jobmanager.rpc.address: jobmanager" \
--name=jobmanager \
--network flink-network \
flink:1.11.2-scala_2.11 standalone-job \
--job-classname flink.demo.word.WordCountMain \
[--job-id <job id>] \
[--fromSavepoint /path/to/savepoint [--allowNonRestoredState]] \
[job arguments]
在Mac系统,需要注意,如果抛出如下异常,需要在docker控制台配置docker的文件权限是否包括当前挂载目录
docker: Error response from daemon: invalid mount config for type "bind": bind source path does not exist: xxx
如果启动时出现如下错误,需要将Flink启动类放在挂载目录中
org.apache.flink.util.FlinkException: Could not find the provided job class (com.job.ClassName) in the user lib directory (/opt/flink/usrlib).
at org.apache.flink.client.deployment.application.ClassPathPackagedProgramRetriever.getJobClassNameOrScanClassPath(ClassPathPackagedProgramRetriever.java:140) ~[flink-dist_2.12-1.11.2.jar:1.11.2]
at org.apache.flink.client.deployment.application.ClassPathPackagedProgramRetriever.getPackagedProgram(ClassPathPackagedProgramRetriever.java:123) ~[flink-dist_2.12-1.11.2.jar:1.11.2]
at org.apache.flink.container.entrypoint.StandaloneApplicationClusterEntryPoint.getPackagedProgram(StandaloneApplicationClusterEntryPoint.java:110) ~[flink-dist_2.12-1.11.2.jar:1.11.2]
at org.apache.flink.container.entrypoint.StandaloneApplicationClusterEntryPoint.main(StandaloneApplicationClusterEntryPoint.java:78) [flink-dist_2.12-1.11.2.jar:1.11.2]
3. 启动TaskManger
docker run \
--mount type=bind,src=/tmp/flink/usrlib/artifacts1,target=/opt/flink/usrlib/artifacts1 \
--mount type=bind,src=/tmp/flink/usrlib/artifacts2,target=/opt/flink/usrlib/artifacts2 \
--env FLINK_PROPERTIES="jobmanager.rpc.address: jobmanager" \
--network flink-network \
flink:1.11.2-scala_2.11 taskmanager
通过k8s启动
1. 准备镜像
1.1. 基于flink:1.11.2-scala_2.11 将Job启动函数以及依赖,生成新的镜像
Dockerfile,Job 启动类(flink.demo.word.WordCountMain)在usrlib/artifacts1目录
FROM flink:1.11.2-scala_2.11
ADD usrlib/artifacts1 /opt/flink/usrlib/artifacts1
ADD usrlib/artifacts2 /opt/flink/usrlib/artifacts2
生成新的镜像
docker build -t flink_with_job_artifacts:1.11.2-scala_2.11 .
试运行启动任务
JobManager
docker run \
--rm \
--env FLINK_PROPERTIES="jobmanager.rpc.address: jobmanager" \
--name=jobmanager \
--network flink-network \
flink_with_job_artifacts:1.11.2-scala_2.11 standalone-job
--job-classname flink.demo.word.WordCountMain \
[--job-id <job id>] \
[--fromSavepoint /path/to/savepoint [--allowNonRestoredState]] \
[job arguments]
TaskManager
docker run \
--env FLINK_PROPERTIES="jobmanager.rpc.address: jobmanager" \
--network flink-network \
flink_with_job_artifacts:1.11.2-scala_2.11 taskmanager
1.2. k8s集群
可通过本地搭建MiniKube,或者使用已有集群
本地可通过docker Desktop直接安装,如果一直处理启动中的状态,可以将docker镜像指定为国内镜像仓库
2. Per-Job模式启动flink
每提交一个任务,单独启动一个集群运行该任务,运行结束集群被删除,资源也被释放。任务启动较慢,适合于长时间运行的大型任务。需要手动指定TaskManger数量
2.1. 资源描述文件
新建flink-config配置,主要为flink公共配置。每个flink作业不同的配置,可在job配置启动参数单独配置
flink-configuration-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: flink-config
labels:
app: flink
data:
flink-conf.yaml: |+
#jobmanager.rpc.address: flink-jobmanager
taskmanager.numberOfTaskSlots: 2
blob.server.port: 6124
jobmanager.rpc.port: 6123
taskmanager.rpc.port: 6122
queryable-state.proxy.ports: 6125
jobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 1728m
parallelism.default: 2
log4j-console.properties: |+
# This affects logging for both user code and Flink
rootLogger.level = INFO
rootLogger.appenderRef.console.ref = ConsoleAppender
rootLogger.appenderRef.rolling.ref = RollingFileAppender
# Uncomment this if you want to _only_ change Flink's logging
#logger.flink.name = org.apache.flink
#logger.flink.level = INFO
# The following lines keep the log level of common libraries/connectors on
# log level INFO. The root logger does not override this. You have to manually
# change the log levels here.
logger.akka.name = akka
logger.akka.level = INFO
logger.kafka.name= org.apache.kafka
logger.kafka.level = INFO
logger.hadoop.name = org.apache.hadoop
logger.hadoop.level = INFO
logger.zookeeper.name = org.apache.zookeeper
logger.zookeeper.level = INFO
# Log all infos to the console
appender.console.name = ConsoleAppender
appender.console.type = CONSOLE
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
# Log all infos in the given rolling file
appender.rolling.name = RollingFileAppender
appender.rolling.type = RollingFile
appender.rolling.append = false
appender.rolling.fileName = ${sys:log.file}
appender.rolling.filePattern = ${sys:log.file}.%i
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
appender.rolling.policies.type = Policies
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size=100MB
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.max = 10
# Suppress the irrelevant (wrong) warnings from the Netty channel handler
logger.netty.name = org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline
logger.netty.level = OFF
将JobManager公开为k8s的服务,以便其他TaskManger可以注册
其中,${JOB}可替换,是区分不同作业的名称
jobmanager-service.yaml
apiVersion: v1
kind: Service
metadata:
name: ${JOB}-jobmanager
spec:
type: ClusterIP
ports:
- name: rpc
port: 6123
- name: blob-server
port: 6124
- name: webui
port: 8081
selector:
app: flink
component: ${JOB}-jobmanager
定义JobManager资源配置,其中需要执行镜像文件image,不同的作业通过 ${JOB}来指定。
如果是本地调试,可以指定volumeMounts来加载本地flink作业运行环境,并且在args来指定运行主类
jobmanager-job.yaml
apiVersion: batch/v1
kind: Job
metadata:
name: ${JOB}-jobmanager
spec:
template:
metadata:
labels:
app: flink
component: ${JOB}-jobmanager
spec:
restartPolicy: OnFailure
containers:
- name: jobmanager
image: flink_with_job_artifacts:1.11.2-scala_2.11
env:
args: ["standalone-job", "-Djobmanager.rpc.address=${JOB}-jobmanager","--job-classname", "flink.demo.word.WordCountMain"] # optional arguments: ["--job-id", "<job id>", "--fromSavepoint", "/path/to/savepoint", "--allowNonRestoredState"]
ports:
- containerPort: 6123
name: rpc
- containerPort: 6124
name: blob-server
- containerPort: 8081
name: webui
livenessProbe:
tcpSocket:
port: 6123
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf
# - name: job-artifacts-volume
# mountPath: /opt/flink/usrlib
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties
# - name: job-artifacts-volume
# hostPath:
# path: /tmp/flink/usrlib/artifacts1
定义TaskManager资源配置
注意同一个任务的${JOB}需要相同,否则TaskManager无法注册成功
taskmanager-job-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: ${JOB}-taskmanager
spec:
replicas: 2
selector:
matchLabels:
app: flink
component: ${JOB}-taskmanager
template:
metadata:
labels:
app: flink
component: ${JOB}-taskmanager
spec:
containers:
- name: taskmanager
image: flink_with_job_artifacts:1.11.2-scala_2.11
env:
args: ["taskmanager","-Djobmanager.rpc.address=${JOB}-jobmanager"]
ports:
- containerPort: 6122
name: rpc
- containerPort: 6125
name: query-state
livenessProbe:
tcpSocket:
port: 6122
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/flink/conf/
# - name: job-artifacts-volume
# mountPath: /opt/flink/usrlib
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties
# - name: job-artifacts-volume
# hostPath:
# path: /tmp/flink/usrlib/artifacts1
2.2. 依次执行以下命令,启动一个flink 作业
执行前需要将${JOB}进行替换,
本地环境:JobManager启动成功后,可通过访问http://localhost:8081,来监控Flink作业状态
kubectl create -f flink-configuration-configmap.yaml
kubectl create -f jobmanager-service.yaml
kubectl create -f jobmanager-job.yaml
kubectl create -f taskmanager-job-deployment.yaml
任务退出
如果flink作业是全量任务,执行完后容器会自动停止。但是flink服务和flink TaskManager 需要手动释放资源。后期可通过JobManager任务执行完后的回调事件,通过k8s api释放这些资源。
kubectl delete -f jobmanager-job.yaml
kubectl delete -f taskmanager-job-deployment.yaml
kubectl create -f jobmanager-service.yaml
特点
优点:隔离性比较好,任务之间资源不冲突,一个任务单独使用一个 Flink 集群;相对于 Flink session 集群而且,资源随用随建,任务执行完成后立刻销毁资源,资源利用率会高一些。
缺点:需要提前指定 TaskManager 的数量,如果 TaskManager 指定的少了会导致作业运行失败,指定的多了仍会降低资源利用率;资源是实时创建的,启动长
3. Native Per Job 模式启动 (推荐)
该模式允许用户创建一个单独的映像,其中包含他们的作业和Flink运行环境,它将根据需要自动创建和销毁集群组件。Flink native per-job Flink 1.11 版本中提供。
交互原理
特点
native per-job cluster 也是任务提交的时候才创建 Flink 集群,不同的是,无需用户指定 TaskManager 资源的数量,因为同样借助了 Native 的特性,Flink 直接与 Kubernetes 进行通信并按需申请资源。
优点:资源按需申请,适合一次性任务,任务执行后立即释放资源,保证了资源的利用率。
缺点:资源是在任务提交后开始创建,同样意味着对于提交任务后对延时比较敏感的场景,需要一定的权衡;
3.1 启动flink集群
进入flink安装包目录执行,启动成功后,用户可以登录http://localhost:8081来访问flink控制台
./bin/flink run-application -p 8 -t kubernetes-application \
-Dkubernetes.cluster-id=befb-d76db49flink-demo \
-Dtaskmanager.memory.process.size=1024m \
-Dkubernetes.taskmanager.cpu=1 \
-Dtaskmanager.numberOfTaskSlots=6 \
-Dkubernetes.container.image=flink_with_job_artifacts:1.11.2-scala_2.11 \
local:///opt/flink/usrlib/artifacts1/flink-demo-1.0-SNAPSHOT.jar
Note: local参数代表的是flink镜像文件中(flink_with_job_artifacts:1.11.2-scala_2.11),作业执行主类jar在镜像中的路径。打包请看上面的Dockerfile文件描述
3.2 停止Flink集群
./bin/flink cancel -t kubernetes-application -Dkubernetes.cluster-id=<ClusterID> <JobID>
更多推荐
所有评论(0)