网关(Gateway)又称网间连接器协议转换器。网关在传输层上以实现网络互连,是最复杂的网络互连设备,仅用于两个高层协议不同的网络互连。网关的结构也和路由器类似,不同的是互连层。网关既可以用于广域网互连,也可以用于局域网互连。网关是一种充当转换重任的计算机系统或设备。在使用不同的通信协议、数据格式或语言,甚至体系结构完全不同的两种系统之间,网关是一个翻译器。与网桥只是简单地传达信息不同,网关对收到的信息要重新打包,以适应目的系统的需求。同时,网关也可以提供过滤和安全功能。大多数网关运行在OSI7层协议的顶层--应用层。

<script type="text/javascript"></script>

目录 [隐藏]

<script src="http://www.hudong.com/js/doccatalog.js" type="text/javascript"></script>

网关-概述

 

 

网关
网关
网关用于互连异构型网络。异构型网络比较复杂,至少要进行 网络层数据链路层物理层的协议转换。网关实现网络互连的层次为了实现异构型网络的互连,可以选择在运输层或者应用层上完成。相应地,网关也就应该对不同层次的协议进行转换。网关实现网络互联的层次:1、在 运输层实现互连:在运输层实现互连的网关称为运输层网关。当两个网络采用不同的协议,题目的运输层也不兼容时,需要采用运输层网关实现网络互连。常见的有两种情况:一是除低3层外,运输层协议也不相同的WAN与WAN之间的互连,再就是局域网与 WAN的互连也有这种情况。此时的网关应具有将运输层及其以下各个层协议进行相互转换的 功能。2、在应用层上实现互连:到目前为止,还尚未开发出在会话层和表示层实现互连的网关,但已出现需索在应用层实现互连的网关,即应用层网关。这种网关可以完成从应用层到 物理协议的转换。

 

 

网关
网关
网关的功能主要有以下几个方面:1、具有协议转换能力。网关具有从物理层到运输层,甚至应用层各层协议转换能力。当然用于不同场合的网关,其协议转换的能力可以不同,比如:有的只需要负责物理层到运输层的协议 转换,有的则需要完成物理层到应用层的协议转换。2、具有 流量控制拥塞控制的能力。对不同工作 速率的网络进行互连时,需要有某种流量控制机构来控制输入到其他网络上的信息流,网关常用的 流量控制方式有:源站仅在得到允许时才进行传输;强制源站减少它们向网络提供的负荷;采用 咨询服务,这种咨询服务告诉源站由于网络拥塞或者其他异常 情况,它所发送的分组已经作废。3、具有在各个网络之间可靠传送信息的能力。为了提高互连的网络的可靠性,常采用一下一些措施:防止分组在若干个网关中无限制的循环;向源站或者其他网关发送 错误报告;对分组从源站到目的站之间的路径进行跟踪;提供网间信息的重传功能。4、具有路由选择功能。5、具有将分组分段和 组装的能力。

网关的用途:网关可以用于以下几种场合的异构型网络的互连。1、异构型局域网互连。可以利用网关将几种完全不同的局域网互联起来。2、局域网与WAN互连。局域网与WAN互连比较,至少其低3层协议不相同,因此它们属于异构型网络,可以用网关实现互连。3、WAN与WAN互连。主要用于不同类型的WAN之间的互连。

网关-内部网关协议RIP

 

 

网关
网关
RIP协议的全称是路由信息协议,它是一种 内部网关协议(IGP)用于一个自治系统(AS)内的路由信息的传递。RIP协议是基于距离矢量算法的,它使用“跳数”,即METRIC来衡量到达目标地址的路由距离。协议中 规定,一条有效的路由信息的度量(METRIC)不能超过15,这就使得该协议不能应用于很大型的网络,应该说正是由于 设计者考虑到该协议只适合于小型网络所以才进行了这一限制。对于METRIC为16的目标网络来说,即认为其不可到达。

协议的局限性:该路由协议应用到实际中时,很容易出现“计数到无穷大”的现象,这使得路由收敛很慢,在网络拓扑结构变化以后需要很长时间路由信息才能稳定下来。该协议以跳数,即报文经过的路由器个数为衡量标准,并以此来选择路由,这一措施欠合理性,因为没有考虑网络延时,可靠性,线路负荷等因素对传输质量与速度影响

 

网关
网关
RIP协议的实现:RIP根据V-D 算法的特点,将协议的参加者分为主动机和被动机两种。主动机主动向外广播路由刷新报文,被动机被动地接收路由刷新报文。一般情况下, 主机作为被动机,路由器则既是主动机又是被动机,即在向外广播路由刷新报文的同时,接受来自其它主动机的V-D报文,并进行路由刷新。RIP规定,路由器每30秒向外广播一个V-D报文,报文 信息来自本地路由表。RIP的V-D报文中,其距离以驿站计:与信宿网络直接相连的路由器规定为一个 驿站,相隔一个路由器则为两个驿站……以此类推。一条路由的距离为该路由(从信源机到信宿机)上的路由器数。为防止寻径环长期存在,RIP规定,长度为16的路由为无限长路由,即不存在的路由。所以一条有效的路由长度不得超过15。正是这一规定限制了RIP的使用范围,使RIP局限于中小型的网络网点中。为了 保证路由的及时有效性,RIP采用 触发刷新技术和 水平分割法。当本地路由表发生修改时,触发广播路由刷新报文,以迅速达到最新路由的广播和全局路由的有效。水平分割法是指当路由器从某个网络接口发送RIP路由刷新报文时,其中不包含从该接口获取的路由信息。这是由于从某 网络接口获取的路由信息对于该接口来说是无用信息,同时也解决了两路由器间的慢收敛 问题

 

网关
网关
对于局域网的路由,RIP规定了路由的超时处理。主要是考虑到这样一个情况,如果完全根据V-D算法,一条路由被刷新是因为出现一条路由 开销更小的路由,否则路由会在路由表中一直保存下去,即使该路由 崩溃。这势必造成一定的错误路由信息。为此,RIP规定,所有机器对其寻径表中的每一条路由都设置一个时钟,每增加一条新路由,相应设置一个新 时钟。在收到的V-D报文中假如有关于此路由的表目,则将时钟清零,重新计时。假如在120秒内一直未收到该路由的刷新信息,则认为该路由崩溃,将其距离设为16, 广播该路由信息。如果再过60后仍未收到该路由的刷新信息,则将它从路由表中删除。如果某路由在距离被设为16后,在被删除前路由被刷新,亦将时钟清零,重新计时,同时广播被刷新的路由信息。至于路由被删除后是否有新的路由来代替被删除路由,取决于去往原路由所指信宿有无其它路由。假如有,相应路由器会广播之。机器一旦收到其它路由的信息, 自然会利用V-D算法建立一条新路由。否则,去往原信宿的路由不再存在。

RIP启动和运行的整个过程如下所描述:某路由器刚启动RIP时,以广播的形式向相邻路由器发送请求报文,相邻路由器的RIP收到请求报文后,响应请求,回发包含本地路由表信息的响应报文。RIP收到响应报文后,修改本地路由表的信息,同时以触发修改的形式向相邻路由器广播本地路由修改信息。相邻路由器收到触发修改报文后,又向其各自的相邻路由器发送触发修改报文。在一连串的触发修改广播后,各路由器的路由都得到修改并保持最新信息。同时,RIP每 30向相邻路由器广播本地路由表,各相邻路由器的RIP在收到路由报文后,对本地路由进行的维护,在众多路由中选择一条最佳路由,并向各自的相邻网广播路由修改信息,使路由达到全局的有效。同时RIP采取一种超时机制对过时的路由进行超时处理,以保证路由的实时性和有效性。RIP作为内部路由器协议,正是通过这种报文交换的方式,提供路由器了解本自治系统内部个网络路由信息的机制。

 

网关
网关
RIP-2支持版本1和版本2两种版本的报文格式。在版本2中,RIP还提供了对子网的支持和提供认证报文形式。版本2的报文提供 子网掩码域,来提供对子网的支持;另外,当报文中的路由项地址域值为0xFFFF时,默认该路由项的剩余部分为认证。RIP2对拨号网的支持则是参考需求RIP和触发 RIP的形式经修改而加入的新功能。这时,我们只是要求在拨号网拨通之后对路由进行30秒一次的广播,而在没拨通时并不作如是 要求,这是根据具体情况变通的 结果

RIP的限制:虽然RIP有很长的历史,但它还是有自身的限制。它非常适合于为早期的网络互联计算路由;然而,技术进步已极大地改变了互联网络。建造和使用的方式。因此,RIP会很快被今天的互联网络所淘汰。RIP的一些最大限制是:
·不能支持长于15跳的路径。
·依赖于固定的度量来计算路由。
·对路由更新反应强烈。
·相对慢的收敛。
·缺乏动态负均衡支持。

RIP协议配置:RIP(RoutinginformationProtocol)是应用较早、使用较普遍的内部网关协议(InteriorGatewayProtocol,简称IGP),适用于小型同类网络,是典型的距离向量(distance- vector)协议。文档见RFC1058、RFC1723。RIP通过广播UDP报文来交换路由信息,每30秒发送一次路由信息更新。RIP提供跳跃计数(hopcount)作为尺度来衡量路由距离,跳跃计数是一个包到达目标所必须经过的路由器的数目。如果到相同目标有二个不等速或不同带宽的路由器,但跳跃计数相同,则RIP认为两个路由是等距离的。RIP最多支持的跳数为15,即在源和目的网间所要经过的最多路由器的数目为15,跳数16表示不可达。

1、有关命令
--------------------------------------------
任务命令
--------------------------------------------
指定使用RIP协议routerrip
--------------------------------------------
指定RIP版本version{1|2}1
--------------------------------------------
指定与该路由器相连的网络networknetwork
---------------------------------------------
注:1、Cisco的RIP版本2支持验证、密钥管理、路由汇总、无类域间路由(CIDR)和变长子网掩码(VLSMs)
2、举例

 

网关
网关


Router1:
routerripversion2network192.200.10.0network192.20.10.0!相关调试命令:showipprotocol
showiproute在全局设置模式下:1.启动RIP路由routerrip2.设置参与RIP路由的子网network子网地址3.允许在非广播型网络中进行RIP路由广播neighbor相邻路由器相邻端口的IP地址4.设置RIP的版本RIP路由协议有2个版本,在与其它厂商路由器相连时,注意版本要一致,缺省状态下,Cisco路由器接收RIP版本1和2的路由信息,但只发送版本1的路由信息,设置RIP的版本vesion1或2。另外,还可以控制特定端口发送或接收特定版本的路由信息。1.只在特定端口发版本1或2的信息,在端口设置模式下ripsendversion1或22.同时发送版本1和2的信息 ipripsendreceive1or23.在特定端口接受版本1或2的路由信息ipripreceive1or24.同时接受版本1和2的路由信息 ipripreceive1or2选择路由协议几点建议:1.在大型网络中,建议使用ospf、eigrp。2.如果网络中含有变长了网掩码(VISM)不能使用igrp,rip版本1,可以使用rip版本 2,ospf,eigrp或静态路由。3.如果使用路由安全设置可以使用RIP版本1或OSPF。4.选用ospf,eigrp在系统稳定后所占带宽比 RIP,IGRP少得多,IGRP比RIP所占带宽也少。5.综合使用动态路由,静态路由,缺省路由,以保证路由的冗余。6.在拨号线路上尽量使用静态路由,以节省费用。7.在小型网络上数据量不大的情况下,且不需要高可性,广域网线路为X.25SVC时,建议用静态路由。

RIP配置事例:1、在下面的网络里,有三台路由器,所有的路由器都运行RIP协议,仅要实现三台路由器互通

 

网关
网关

 

配置:
Joe(config)#routerrip
Joe(config-router-rip)#network192.168.0.0/24
Joe(config-router-rip)#network192.168.1.0/24

Hamer(config)#routerrip
Hamer(config-router-rip)#network192.168.1.0/24
Hamer(config-router-rip)#network133.81.1.0/24

Tom(config)#routerrip
Tom(config-router-rip)#network192.168.1.0/24
Tom(config-router-rip)#network133.81.2.0/24

2、在下面的网络里,有三台路由器,所有的路由器都运行RIP协议,要实现:
(1)Ros的E0端口接收Hata和Bito发来的路由更新报文。
(2)Ros在E0发送的更新报文仅发送给Bito。

 

网关
网关

 

配置:
Ros的配置如下:
Ros(config)#routerrip
Ros(config-router-rip)#network192.168.1.0/24
Ros(config-router-rip)#network10.8.11.0/24
Ros(config-router-rip)#passive-interfaceeth0/0
Ros(config-router-rip)#neighbor192.168.1.35

Bito的配置如下:
Bito(config)#routerrip
Bito(config-router-rip)#network192.168.1.0/24
Bito(config-router-rip)#network137.1.1.3/24

Hata的配置如下:
Hata(config)#routerrip
Hata(config-router-rip)#network192.168.1.0/24

3、如下图所示:有三台路由器,Melu和Haha现在正常运行,现要添加一台名称为Toba的HOS路由器使Toba和Haha互相联通,并且不能破坏现在Melu和Haha的运行状态
已知Melu和Haha运行的协议为:
(1)Haha上运行的是RIPv1,无认证配置。
(2)Melu上运行的是RIPv2,无认证配置。

 

网关
网关


分析:
HOS默认值是,RIP发送版本1,接收版本1和版本2的update报文。这样我们只要在Toba上运行起RIP,并且指定192.168.0.1/24为RIP活动网络范围,Toba就可以和Haha建立联通了。由于Melu运行的版本为RIPv2,只要让Toba发送RIPv2报文就可以了。
因而,Toba可以配置为:
Toba(config)#routerrip
Toba(config-router-rip)#network192.168.0.0/24
Toba(config-router-rip)#network10.8.11.0/24
Toba(config-router-rip)#exit
Toba(config)#interfaceeth0/0
Toba(config-if-eth0/0)#ipripsendversion2

4、如下图所示:有两台HOS路由器,现在要求实现Wed和Hax联通并且要有MD5认证。

 

网关
网关


分析:
有认证的情况下实现两台路由器的互联,这两台路由器必须配置相同的认证方式和密钥才能进行双方的路由的交换,值得注意的是双方必须发送版本2
Hax(config)#keychainwan
Hax(config-keychain)#key1
Hax(config-keychain-key)#key-stringwan
Hax(config-keychain-key)#exit
Hax(config-keychain)#exit
Hax(config)#interfaceeth0/0
Hax(config-if-eth0/0)#ipripauthenticationkey-chainwan
Hax(config-if-eth0/0)#ipripauthenticationmodemd5
Hax(config-if-eth0/0)#ipripsendversion2
Hax(config-if-eth0/0)#ipripreceiveversion2

5、监视和维护RIP

 

网关
网关


说明
上面的列表显示了RIP路由表的详细信息。第一列显示的是每条路由来自哪种方式。如:RIP表示是本路由从其它路由器学习到的路由,Connect表示该路由是直连路由。第二列的Network指定了该路由目标地址范围。第三列NextHop是本路由的下一条地址。第四列Metric是本路由的度量值。第五列From标明本路由来自何处。第六列Time用来显示当前定时器的已经定时时间长度,当路由没有过期的时候,显示的是无效定时时间长度,当路由过期时,显示的是删除定时器的时间长度

网关-内部网关协议OSPF

 

 

网关
网关
OSPF(OpenShortestPathFirst)是一个内部网关协议(InteriorGatewayProtocol、简称 IGP),用于在单一自治系统(autonomoussystem、 AS)内决策路由。与RIP相对,OSPF是链路状态路由协议,而RIP是距离向量路由协议。链路是路由器接口的另一种说法,因此 OSPF也称为接口状态路由协议。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径 ,每个OSPF路由器使用这些最短路径 构造路由。内部网关协议(InteriorGatewayProtocols,IGP)用在一个域中交换路由 选择信息,如路由选择信息协议(RIP)和优先开放最短 路径协议(OSPF)。OSPF是与OSI的IS-IS协议十分相似的内部路由选择协议。

OSPF是功能最强大、特点最丰富的开放式路由协议之一。它的复杂性也是其弱点来源,因为设计、建造和操作一个OSPF互联网络需要比使用几乎每一种其他路由协议更多的专业知识和精力。采用路由耗费的缺省值可以极大地简化OSPF网络设计。随着关于OSPF及网络操作特点知识的增加,用户能够慢慢地通过控制OSPF变量来优化网络性能。必须小心地设计区和网络拓扑。做得好,OSPF会使网络用户得到优异的性能和快速的收敛速度。BGP用于特大型网络如INTERNET的核心

OSPF是一种典型的链路状态路由协议。采用OSPF的路由器彼此交换并保存整个网络的链路信息,从而掌握全网的拓扑结构,独立计算路由。因为RIP路由协议不能服务于大型网络,所以,IETF的IGP工作组特别开发出链路状态协议——OSPF。目前广为使用的是OSPF第二版,最新标准为RFC2328。OSPF作为一种内部网关协议(InteriorGatewayProtocol,IGP),用于在同一个自治域(AS)中的路由器之间发布路由信息。区别于距离矢量协议 (RIP),OSPF具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位

 

网关
网关
1、链路状态:OSPF 路由器收集其所在网络区域上各路由器的连接状态信息,即链路状态信息(Link-State),生成链路状态数据库(Link-StateDatabase)。路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个网络的 拓扑状况。OSPF路由器利用“最短路径优先算法(ShortestPathFirst,SPF)”,独立地 计算出到达任意目的地的路由。2、区域:OSPF协议引入“分层路由”的概念,将网络分割成一个“主干”连接的一组相互独立的部分,这些相互独立的部分被称为“ 区域”(Area),“主干”的部分称为“主干区域”。每个区域就如同一个独立的网络,该区域的OSPF路由器只保存该区域的链路状态。每个路由器的链路状态数据库都可以保持合理的大小,路由计算的时间、报文数量都不会过大。3、OSPF网络类型:根据路由器所连接的物理网络不同,OSPF将网络划分为四种 类型广播多路访问型(BroadcastmultiAccess)、非广播多路访问型(NoneBroadcastMultiAccess, NBMA)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)。广播多路访问型网络如: Ethernet、TokenRing、 FDDI。NBMA型网络如:FrameRelay、X.25、SMDS。Point-to-Point型网络如: PPPHDLC

 

 

网关
网关
4、指派路由器( DR)和备份指派路由器( BDR):在多路访问网络上可能存在多个路由器,为了避免路由器之间建立完全相邻关系而引起的大量 开销,OSPF要求在区域中选举一个DR。每个路由器都与之建立完全相邻关系。DR负责收集所有的链路状态信息,并发布给其他路由器。选举DR的同时也选举出一个 BDR,在DR失效的时候,BDR担负起DR的职责。点对点型网络不需要DR,因为只存在两个节点,彼此间完全相邻。协议组成OSPF协议由Hello协议、交换协议、 扩散协议组成。本文仅介绍Hello协议,其他两个协议可参考RFC2328中的具体描述。当路由器开启一个端口的OSPF路由时,将会从这个端口发出一个Hello报文,以后它也将以一定的间隔周期性地发送Hello报文。OSPF路由器用Hello报文来初始化新的相邻 关系以及确认相邻的路由器 邻居之间的 通信状态。对广播型网络和非广播型多路访问网络,路由器使用Hello协议选举出一个DR。在广播型网络里,Hello报文使用多播地址224.0.0.5周期性广播,并通过这个过程自动发现路由器邻居。在 NBMA网络中,DR负责向其他路由器逐一发送Hello报文。

第一步:建立路由器的邻接关系:所谓“邻接关系”(Adjacency)是指OSPF路由器以交换路由信息为目的,在所选择的相邻路由器之间建立的一种关系。路由器首先发送拥有自身ID信息(Loopback端口或最大的IP地址)的Hello报文。与之相邻的路由器如果收到这个Hello报文,就将这个报文内的ID信息加入到自己的Hello报文内。如果路由器的某端口收到从其他路由器发送的含有自身ID信息的Hello报文,则它根据该端口所在网络类型确定是否可以建立邻接关系。在点对点网络中,路由器将直接和对端路由器建立起邻接关系,并且该路由器将直接进入到第三步操作:发现其他路由器。若为MultiAccess网络,该路由器将进入选举步骤

 

网关
网关
第二步:选举DR/BDR:不同类型的网络选举DR和BDR的方式不同。MultiAccess网络支持多个路由器,在这种状况下,OSPF需要建立起作为链路状态和 LSA更新的 中心节点。选举利用Hello报文内的ID和 优先权(Priority)字段值来确定。优先权字段值大小从0到255,优先权值最高的路由器成为DR。如果优先权值大小一样,则ID值最高的路由器选举为DR,优先权值次高的路由器选举为BDR。优先权值和ID值都可以直接设置。

第三步:发现路由器:在这个步骤中,路由器与路由器之间首先利用Hello报文的ID信息确认主从关系,然后主从路由器相互交换部分链路状态信息。每个路由器对信息进行分析比较,如果收到的信息有新的内容,路由器将要求对方发送完整的链路状态信息。这个状态完成后,路由器之间建立完全相邻(FullAdjacency)关系,同时邻接路由器拥有自己独立的、完整的链路状态数据库。在MultiAccess网络内,DR与BDR互换信息,并同时与本子网内其他路由器交换链路状态信息。Point-to-Point或Point-to-MultiPoint网络中,相邻路由器之间信息。

第四步:选择适当的路由器:当一个路由器拥有完整独立的链路状态数据库后,它将采用SPF算法计算并创建路由表。OSPF路由器依据链路状态数据库的内容,独立地用SPF算法计算出到每一个目的网络的路径,并将路径存入路由表中。OSPF利用量度(Cost)计算目的路径,Cost最小者即为最短路径。在配置OSPF路由器时可根据实际情况,如链路带宽时延经济上的费用设置链路Cost大小。Cost越小,则该链路被选为路由的可能性越大。

第五步:维护路由信息:当链路状态发生变化时,OSPF通过Flooding过程通告网络上其他路由器。OSPF路由器接收到包含有新信息的链路状态更新报文,将更新自己的链路状态数据库,然后用SPF算法重新计算路由表。在重新计算过程中,路由器继续使用旧路由表,直到SPF完成新的路由表计算。新的链路状态信息将发送给其他路由器。值得注意的是,即使链路状态没有发生改变,OSPF路由信息也会自动更新,默认时间为30分钟

 

网关
网关
OSPF路由器之间使用链路状态 通告(LSA)来交换各自的链路状态信息,并把获得的信息存储在链路状态数据库中。各OSPF路由器独立使用SPF算法计算到各个 目的地址的路由。OSPF协议支持分层路由方式,这使得它的扩展能力远远超过RIP 协议。当OSPF网络扩展到100、500甚至上千个路由器时,路由器的链路状态数据库将记录成千上万条链路信息。为了使路由器的运行更快速、更经济、占用的资源更少, 网络工程师们通常按功能、结构和需要把OSPF网络分割成若干个 区域,并将这些区域和主干区域根据功能和需要相互连接从而达到分层的目的。

 

【OSPF分层路由的思想】OSPF把一个大型网络分割成多个小型网络的能力被称为分层路由,这些被分割出来的小型网络就称为“区域”(Area)。由于区域内部路由器仅与同区域的路由器交换LSA信息,这样LSA报文数量及链路状态信息库表项都会极大减少,SPF计算速度因此得到提高。多区域的OSPF必须存在一个主干区域,主干区域负责收集非主干区域发出的汇总路由信息,并将这些信息返还给到各区域。OSPF区域不能随意划分,应该合理地选择区域边界,使不同区域之间的通信量最小。但在实际应用中区域的划分往往并不是根据通信模式而是根据地理或政治因素来完成的。

【OSPF中的四种路由器】在OSPF多区域网络中,路由器可以按不同的需要同时成为以下四种路由器中的几种:1、内部路由器:所有端口在同一区域的路由器,维护一个链路状态数据库。2、主干路由器:具有连接主干区域端口的路由器。3、区域边界路由器(ABR):具有连接多区域端口的路由器,一般作为一个区域的出口。ABR为每一个所连接的区域建立链路状态数据库,负责将所连接区域的路由摘要信息发送到主干区域,而主干区域上的ABR则负责将这些信息发送到各个区域。4、自治域系统边界路由器(ASBR):至少拥有一个连接外部自治域网络(如非OSPF的网络)端口的路由器,负责将非OSPF网络信息传入OSPF网络。

 

网关
网关
【OSPF链路状态 公告类型】OSPF路由器之间交换链路状态公告(LSA)信息。OSPF的LSA中包含连接的 接口、使用的Metric及其他 变量信息。OSPF路由器收集链接状态信息并使用SPF算法来计算到各节点的最短路径。LSA也有几种不同功能的报文,在这里简单地介绍一下:
LSATYPE1:由每台路由器为所属的区域产生的 LSA,描述本区域路由器链路到该区域的 状态代价。一个边界路由器可能产生多个LSATYPE1。
LSATYPE2:由DR产生,含有连接某个区域路由器的所有链路状态和代价信息。只有DR可以 监测该信息。
LSATYPE3:由ABR产生,含有ABR与本地内部路由器连接信息,可以描述本区域到主干区域的链路信息。它通常汇总缺 路由而不是传送汇总的OSPF信息给其他网络。
LSATYPE4:由ABR产生,由主干区域发送到其他ABR,含有ASBR的链路信息,与LSATYPE3的 区别在于TYPE4描述到OSPF网络的外部路由,而TYPE3则 描述区域内路由。
LSATYPE5:由ASBR产生,含有关于自治域外的链路信息。除了存根区域和完全 存根区域,LSATYPE5在整个网络中发送。
LSATYPE6: 多播OSPF( MOSF),MOSF可以让路由器利用链路状态数据库的信息构造用于多播报文的多播发布树。
LSATYPE7:由ASBR产生的关于NSSA的信息。LSATYPE7可以转换为LSATYPE5。

网关-外部网关协议BGP

 

 

网关
网关
两个交换选路信息的路由器若分属两个自治系统,则被称为外部邻站(exteriorneighbors),但它们若同属一个自治 系统,则称为内部邻站(interiorneighbors)。外部邻站使用的向其他自治系统 通告可达 信息的协议被称为外部网关协议 EGP(ExteriorGatewayProtocol),使用该协议的路由器被称为外部路由器(exteriorrouter)。在Internet网中,EGP显得尤为重要,因为与之相连的自治系统使用它向核心系统通告可达信息。EGP有三大功能。第一个是它支持邻居获取(neighboracquisition)机制,即允许一个路由器 请求另一个路由器同意交换可达信息。我们可以说,一个路由器获得了(acquire)一个EGP对等路由器(EGPpeer)或一个EGP邻站(EGPneighbor)。EGP对等路由器仅在交换选路信息的 意义上来说是邻站,而不论其地理位置是否邻近。第二,路由器持续地 测试其EGP邻站是否能够 响应。第三,EGP邻站周期性地传送选路更新报文(routingupdatemessage)来交换网络可达信息。

外部网关协议用于在非核心的相邻网关之间传输信息。非核心网关包含互联网络上所有与其直接相邻的网关的路由信息及其所连机器信息,但是它们不包含Internet上其他网关的信息。对绝大多数EGP而言,只限制维护其服务局域网或广域网信息。这样可以防止过多的路由信息在局域网或广域网之间传输。EGP强制在非核心网关之间交流路由信息。

由于核心网关使用GGP,非核心网关使用EGP,而二者都应用在Internet上,所以必须有某些方法使二者彼此之间能够通信。Internet使任何自治(非核心)网关给其他系统发送“可达”信息,这些信息至少要送到一个核心网关。假如有一个更大的自治网络,经常认为有一个网关来处理这些可达信息。和GGP一样,EGP使用一个查询过程来让网关清楚它的相邻网关并不断地与其相邻者交换路由和状态信息。EGP是状态驱动的协议,意思是说它依靠于一个反映网关情况的状态表和一组当状态表项变化时必须执行的一组操作。

 

网关
网关
EGP报文 首部:为了实现上述三个基本功能,EGP 定义了下表所列的九种报文类型:
EGP报文类型 描述
AcquisitionRequest(获取请求)请求路由器成为邻站(对等路由器)
AcquisitionConfirm(获取 证实)对获取请求的肯定响应
AcquisitionRefuse(获取 拒绝)对获取请求的否定响应
CeaseRequest(中止请求)请求中止邻站关系
CeaseConfirm(中止证实)对中止请求的证实响应
Hello(你好)请求邻站回答是否活跃
IHeardYou(我听见你)对Hello报文的回答
PollRequest(轮询请求)请求更新网络的选路
RoutingUpdate(选路更新)网络可达信息
Error(差错)对不正确报文的响应
所有的EGP报文都有固定的首都用于 说明报文类型。

 

网关
网关
首部中的版本(VERSION) 字段整数值,指出该报文使用的EGP的版本号。接收方检测版本号以确认双方使用相同版本的协议。类型(TYPE)字段指出报文的类型,而代码(CODE)字段给出了子类型。状态(STATUS)字段包含了与本报文有关的状态信息。EGP使用校验和字段来确认报文的正确到达。其算法与 IP校验和算法相同。它把整个EGP报文当做16比特整数的序列,使用各个整数的 二进制反码和的 二进制反码作为校验和。计算校验和之前把校验和(CHECKSUM)字段初始化为零,通过填充0来把报文长度变为16比特的整数倍。自治系统号(AUTONOMOUSSYSTEMNUM)字段给出了表示发送该报文的路由器所在的自治系统的 编号,而序号(SEQUENCENUMBER)用于收发双方进行联系。路由器请求邻站时赋一个初始序号,以后每次发送报文时将序号增加。邻站回送最近收到的序号值,发送方便用这个回送值与发送时的值作一比较来确保报文的正确性。

网关-参考文献

 

1、《计算机通信网》王晓军毛京丽编著
2、http://www.cnpaf.net/search.asp
3、http://www.knowsky.com/380367.html
4、http://www.3800hk.com
5、http://codex.wordpress.org.cn/index.php?
6、http://www.yypark.cn/development/p41/J414997.shtml

Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐