【GitHub项目推荐--Awesome-Multimodal-Large-Language-Models:多模态大模型资源完全指南】
是由BradyFU维护的综合性多模态大语言模型资源集合,涵盖了最新的多模态AI研究进展、模型、数据集和评估基准。该项目系统性地整理了多模态大语言模型领域的最新成果,为研究人员、开发者和学习者提供了全面的参考资料和学习路径。🔗 GitHub地址⚡ 核心价值:多模态AI · 资源集合 · 研究指南 · 开源学习项目特色:全面性:涵盖多模态AI各个子领域的最新进展系统性:按技术
简介
Awesome-Multimodal-Large-Language-Models 是由BradyFU维护的综合性多模态大语言模型资源集合,涵盖了最新的多模态AI研究进展、模型、数据集和评估基准。该项目系统性地整理了多模态大语言模型领域的最新成果,为研究人员、开发者和学习者提供了全面的参考资料和学习路径。
🔗 GitHub地址:
https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
⚡ 核心价值:
多模态AI · 资源集合 · 研究指南 · 开源学习
项目特色:
-
全面性:涵盖多模态AI各个子领域的最新进展
-
系统性:按技术方向和资源类型精心分类整理
-
及时性:持续更新最新研究和模型发布
-
实用性:提供代码、数据集、评估基准等实用资源
-
社区驱动:由社区共同维护和更新内容
-
多维度:覆盖模型、数据、评估、应用等多个维度
主要功能
1. 核心架构

2. 资源矩阵
|
资源类别 |
核心内容 |
代表性资源 |
|---|---|---|
|
研究论文 |
最新顶会论文,技术报告,综述文章 |
VITA, LLaVA, MiniGPT, BLIP系列 |
|
开源模型 |
预训练模型,微调模型,基础模型 |
InternVL, Qwen-VL, DeepSeek-VL |
|
数据集 |
训练数据集,评估数据集,合成数据 |
MME, Video-MME, SEED-Bench |
|
评估基准 |
性能评估,能力测试,对比分析 |
MMBench, MMVet, MathVista |
|
代码实现 |
模型代码,训练代码,推理代码 |
各模型官方实现,优化版本 |
|
工具生态 |
开发工具,部署工具,监控工具 |
VLLM, Transformers, Gradio |
3. 技术特性
-
多模态覆盖:视觉、语音、视频、3D等多种模态
-
模型全面:从基础模型到专用模型的完整谱系
-
评估体系:建立完善的多维度评估指标体系
-
实践导向:提供可运行的代码和部署方案
-
社区支持:活跃的社区讨论和问题解答
-
持续更新:跟随技术发展持续更新内容
安装与配置
1. 环境准备
# 基础环境要求
操作系统: Ubuntu 20.04+, Windows WSL2, macOS 12+
Python: 3.8+ (推荐3.10)
PyTorch: 2.0+
CUDA: 11.7+ (推荐11.8)
GPU: NVIDIA GPU with 8GB+ VRAM
# 推荐配置
GPU: RTX 4090, A100, V100等
显存: 16GB+ VRAM
内存: 32GB+ RAM
存储: 100GB+ SSD空间
# 开发工具
Git: 最新版本
Docker: 20.10+ (可选)
IDE: VSCode, PyCharm等
2. 基础安装
克隆资源库:
# 克隆主仓库
git clone https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.git
cd Awesome-Multimodal-Large-Language-Models
# 或使用稀疏检出(只获取特定部分)
git sparse-checkout init --cone
git sparse-checkout set papers models datasets
安装核心依赖:
# 创建conda环境
conda create -n mllm python=3.10 -y
conda activate mllm
# 安装PyTorch (根据CUDA版本选择)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# 安装Transformers和相关库
pip install transformers accelerate datasets
pip install openai-whisper timm decord
pip install gradio streamlit huggingface_hub
# 安装视觉相关库
pip install opencv-python pillow matplotlib
pip install scikit-image imageio imageio-ffmpeg
# 安装音频处理库
pip install librosa soundfile pydub
pip install torchaudio audiocraft
# 安装评估工具
pip install evaluate rouge-score bert-score
pip install nltk spacy sentencepiece
模型特定依赖:
# 安装vLLM用于高效推理
pip install vllm
# 安装FlashAttention用于优化
pip install flash-attn --no-build-isolation
# 安装Deepspeed用于分布式训练
pip install deepspeed
# 安装JAX(某些模型需要)
pip install jax jaxlib
3. 模型下载
从HuggingFace下载:
# 安装git-lfs
git lfs install
# 下载流行多模态模型
git clone https://huggingface.co/internlm/internvl-chat
git clone https://huggingface.co/Qwen/Qwen-VL-Chat
git clone https://huggingface.co/DeepSeek-AI/DeepSeek-VL
# 使用huggingface_hub下载
from huggingface_hub import snapshot_download
snapshot_download(repo_id="internlm/internvl-chat", local_dir="./models/internvl")
模型配置示例:
# config.py - 模型配置管理
MODEL_CONFIGS = {
"internvl": {
"repo_id": "internlm/internvl-chat",
"model_class": "InternVLChatModel",
"requirements": ["torch", "transformers"],
"memory_usage": "16GB",
"supported_modalities": ["image", "text"]
},
"qwen-vl": {
"repo_id": "Qwen/Qwen-VL-Chat",
"model_class": "QwenVLForConditionalGeneration",
"requirements": ["torch", "transformers"],
"memory_usage": "14GB",
"supported_modalities": ["image", "text"]
},
"deepseek-vl": {
"repo_id": "DeepSeek-AI/DeepSeek-VL",
"model_class": "DeepSeekVLForConditionalGeneration",
"requirements": ["torch", "transformers", "flash_attn"],
"memory_usage": "18GB",
"supported_modalities": ["image", "text"]
}
}
def get_model_config(model_name):
return MODEL_CONFIGS.get(model_name.lower(), {})
4. 数据准备
下载评估数据集:
# 创建数据目录
mkdir -p data/benchmarks
cd data/benchmarks
# 下载MME基准
wget https://huggingface.co/datasets/BradyFU/MME/resolve/main/mme_benchmark.zip
unzip mme_benchmark.zip
# 下载SEED-Bench
wget https://huggingface.co/datasets/BradyFU/SEED-Bench/resolve/main/seed_benchmark.tar.gz
tar -xzf seed_benchmark.tar.gz
# 下载Video-MME
git clone https://github.com/BradyFU/Video-MME.git
数据集配置:
# dataset_config.py - 数据集配置
DATASET_CONFIGS = {
"mme": {
"path": "./data/benchmarks/mme",
"modalities": ["image", "text"],
"tasks": ["recognition", "grounding", "reasoning"],
"split": ["test"]
},
"seed_bench": {
"path": "./data/benchmarks/seed_bench",
"modalities": ["image", "video", "text"],
"tasks": ["qa", "captioning", "reasoning"],
"split": ["test"]
},
"video_mme": {
"path": "./data/benchmarks/video_mme",
"modalities": ["video", "text"],
"tasks": ["temporal_understanding", "action_recognition"],
"split": ["test"]
}
}
使用指南
1. 基本工作流

2. 基本使用
快速开始示例:
# quick_start.py
from transformers import AutoProcessor, AutoModel
import torch
from PIL import Image
# 加载模型和处理器
model_name = "internlm/internvl-chat"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
# 准备输入
image = Image.open("example.jpg")
question = "描述这张图片中的内容"
# 处理输入
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
# 生成响应
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
# 解码输出
response = processor.decode(outputs[0], skip_special_tokens=True)
print(f"模型响应: {response}")
批量评估示例:
# 运行MME评估
python evaluate_mme.py \
--model_name internvl \
--model_path ./models/internvl \
--data_path ./data/benchmarks/mme \
--output_dir ./results/mme \
--batch_size 4 \
--device cuda:0
# 运行SEED-Bench评估
python evaluate_seed.py \
--model_name qwen-vl \
--model_path ./models/qwen-vl \
--data_path ./data/benchmarks/seed_bench \
--output_dir ./results/seed \
--tasks all \
--device cuda:0
Web演示界面:
# 启动Gradio演示
python demo_gradio.py \
--model_name internvl \
--model_path ./models/internvl \
--port 7860 \
--share true
# 启动Streamlit演示
streamlit run demo_streamlit.py \
--model_path ./models/internvl \
--server.port 8501
3. 高级功能
多模型对比评估:
# compare_models.py
import pandas as pd
from evaluation import evaluate_model
def compare_models(models, benchmark_path, output_file):
results = {}
for model_name, model_path in models.items():
print(f"评估模型: {model_name}")
result = evaluate_model(
model_name=model_name,
model_path=model_path,
benchmark_path=benchmark_path
)
results[model_name] = result
# 保存结果
df = pd.DataFrame.from_dict(results, orient='index')
df.to_csv(output_file, index=True)
print(f"结果已保存到: {output_file}")
# 生成对比报告
generate_comparison_report(df, output_file.replace('.csv', '_report.md'))
return df
# 使用示例
models_to_compare = {
"internvl": "./models/internvl",
"qwen-vl": "./models/qwen-vl",
"deepseek-vl": "./models/deepseek-vl"
}
benchmark_path = "./data/benchmarks/mme"
output_file = "./results/model_comparison.csv"
results_df = compare_models(models_to_compare, benchmark_path, output_file)
自定义评估流程:
# custom_evaluation.py
from evaluation_metrics import calculate_accuracy, calculate_bleu, calculate_rouge
class CustomEvaluator:
def __init__(self, model, processor):
self.model = model
self.processor = processor
self.metrics = {
'accuracy': calculate_accuracy,
'bleu': calculate_bleu,
'rouge': calculate_rouge
}
def evaluate_on_dataset(self, dataset, metrics=['accuracy']):
results = {}
for item in dataset:
# 准备输入
inputs = self.prepare_inputs(item)
# 模型推理
outputs = self.model.generate(**inputs)
# 后处理
prediction = self.postprocess_output(outputs)
# 计算指标
for metric_name in metrics:
if metric_name in self.metrics:
score = self.metrics[metric_name](prediction, item['answer'])
results.setdefault(metric_name, []).append(score)
# 汇总结果
summary = {
metric_name: sum(scores) / len(scores)
for metric_name, scores in results.items()
}
return summary
def prepare_inputs(self, item):
# 根据数据类型准备输入
if 'image' in item:
image = Image.open(item['image_path'])
text = item['question']
return self.processor(images=image, text=text, return_tensors="pt")
else:
text = item['question']
return self.processor(text=text, return_tensors="pt")
def postprocess_output(self, outputs):
return self.processor.decode(outputs[0], skip_special_tokens=True)
模型微调示例:
# 微调脚本示例
python finetune_model.py \
--model_name internvl \
--model_path ./models/internvl \
--dataset_path ./data/custom_dataset \
--output_dir ./finetuned_models/internvl-custom \
--epochs 10 \
--batch_size 8 \
--learning_rate 2e-5 \
--warmup_steps 100 \
--logging_steps 50 \
--save_steps 500
4. 资源探索
论文研究工具:
# paper_explorer.py
import json
from datetime import datetime
class PaperExplorer:
def __init__(self, papers_file="./resources/papers.json"):
with open(papers_file, 'r', encoding='utf-8') as f:
self.papers = json.load(f)
def search_papers(self, keywords, venue=None, year=None):
results = []
for paper in self.papers:
# 关键词搜索
keyword_match = any(keyword.lower() in paper.get('title', '').lower() or
keyword.lower() in paper.get('abstract', '').lower()
for keyword in keywords)
# 会议筛选
venue_match = not venue or paper.get('venue', '').lower() == venue.lower()
# 年份筛选
year_match = not year or paper.get('year') == year
if keyword_match and venue_match and year_match:
results.append(paper)
return sorted(results, key=lambda x: x.get('year', 0), reverse=True)
def get_recent_papers(self, days=30):
recent_cutoff = datetime.now().timestamp() - days * 24 * 60 * 60
return [paper for paper in self.papers
if paper.get('date', 0) > recent_cutoff]
def get_papers_by_venue(self, venue):
return [paper for paper in self.papers
if paper.get('venue', '').lower() == venue.lower()]
# 使用示例
explorer = PaperExplorer()
cvpr_papers = explorer.get_papers_by_venue("CVPR")
recent_multimodal_papers = explorer.search_papers(["multimodal", "vision language"], days=60)
应用场景实例
案例1:多模态研究文献综述
场景:研究人员需要系统了解多模态大模型最新进展
解决方案:

实施效果:
-
文献调研效率 提高5倍
-
技术脉络 清晰把握
-
研究热点 准确识别
-
知识体系 系统建立
案例2:多模态模型性能评估
场景:企业需要选择合适的多模态模型用于产品开发
解决方案:
# 模型评估配置
model_evaluation:
evaluation_benchmarks:
- name: "MME"
modalities: ["image", "text"]
tasks: ["recognition", "grounding", "reasoning"]
metrics: ["accuracy", "precision", "recall"]
- name: "SEED-Bench"
modalities: ["image", "video", "text"]
tasks: ["qa", "captioning", "reasoning"]
metrics: ["bleu", "rouge", "accuracy"]
- name: "Video-MME"
modalities: ["video", "text"]
tasks: ["temporal_understanding", "action_recognition"]
metrics: ["accuracy", "f1_score"]
candidate_models:
- name: "InternVL-Chat"
parameters: "8B"
modalities: ["image", "text"]
strengths: ["强推理能力", "中文优化"]
- name: "Qwen-VL-Chat"
parameters: "7B"
modalities: ["image", "text"]
strengths: ["多语言支持", "高效推理"]
- name: "DeepSeek-VL"
parameters: "7B"
modalities: ["image", "text"]
strengths: ["长上下文", "强编码能力"]
evaluation_criteria:
performance: 40%
efficiency: 25%
scalability: 20%
cost: 15%
output_reports:
- "详细评估报告"
- "性能对比图表"
- "推荐建议"
- "部署方案"
实施效果:
-
模型选择 科学依据
-
性能评估 全面客观
-
部署风险 提前识别
-
资源投入 优化配置
案例3:学术研究实验复现
场景:研究生需要复现顶会论文实验并进行改进
解决方案:
-
论文选择:选择目标论文和基线模型
-
环境配置:搭建复现所需的软件环境
-
代码获取:获取论文官方代码或社区实现
-
数据准备:准备训练和评估数据集
-
实验运行:运行基线实验并验证结果
-
改进实验:实现改进方法并进行对比实验
-
结果分析:分析实验结果并撰写论文
复现工作流:
# 1. 选择论文和模型
论文: "VITA: Towards Open-Source Interactive Omni Multimodal LLM"
模型: "VITA-1.5"
# 2. 搭建环境
git clone https://github.com/MoonshotAI/VITA.git
cd VITA
conda create -n vita python=3.10 -y
conda activate vita
pip install -r requirements.txt
# 3. 下载模型权重
wget https://huggingface.co/MoonshotAI/VITA-1.5/resolve/main/model.safetensors
wget https://huggingface.co/MoonshotAI/VITA-1.5/resolve/main/config.json
# 4. 准备数据
mkdir -p data
wget https://huggingface.co/datasets/MoonshotAI/VITA-Demo/resolve/main/demo_data.zip
unzip demo_data.zip -d data/
# 5. 运行推理演示
python demo.py --model_path ./model.safetensors --data_dir ./data
# 6. 运行评估
python evaluate.py --model_path ./model.safetensors --benchmark MME
# 7. 实现改进
# 在原有代码基础上实现改进方法
python train_improved.py --base_model ./model.safetensors --output_dir ./improved_model
实施效果:
-
复现效率 显著提高
-
实验结果 可靠验证
-
研究方法 深入掌握
-
论文质量 明显提升
案例4:工业应用原型开发
场景:创业公司需要开发多模态AI应用原型
解决方案:
# 工业应用原型开发框架
class MultimodalAppPrototype:
def __init__(self, model_name, device="cuda:0"):
self.model_name = model_name
self.device = device
self.model = None
self.processor = None
self.setup_model()
def setup_model(self):
"""根据模型名称加载相应的模型和处理器"""
if self.model_name == "internvl":
from transformers import AutoProcessor, AutoModel
self.processor = AutoProcessor.from_pretrained("internlm/internvl-chat")
self.model = AutoModel.from_pretrained("internlm/internvl-chat", torch_dtype=torch.float16).to(self.device)
elif self.model_name == "qwen-vl":
from transformers import AutoProcessor, AutoModel
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen-VL-Chat")
self.model = AutoModel.from_pretrained("Qwen/Qwen-VL-Chat", torch_dtype=torch.float16).to(self.device)
elif self.model_name == "deepseek-vl":
from deepseek_vl import DeepSeekVLProcessor, DeepSeekVLForConditionalGeneration
self.processor = DeepSeekVLProcessor.from_pretrained("DeepSeek-AI/DeepSeek-VL")
self.model = DeepSeekVLForConditionalGeneration.from_pretrained("DeepSeek-AI/DeepSeek-VL", torch_dtype=torch.float16).to(self.device)
def process_image_question(self, image_path, question):
"""处理图像问答任务"""
from PIL import Image
image = Image.open(image_path)
inputs = self.processor(images=image, text=question, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(**inputs, max_new_tokens=100)
response = self.processor.decode(outputs[0], skip_special_tokens=True)
return response
def process_video_analysis(self, video_path, question):
"""处理视频分析任务"""
# 视频帧提取和分析
frames = self.extract_video_frames(video_path)
responses = []
for frame in frames:
response = self.process_image_question(frame, question)
responses.append(response)
# 综合所有帧的分析结果
final_response = self.aggregate_responses(responses)
return final_response
def batch_process(self, task_list):
"""批量处理任务"""
results = []
for task in task_list:
if task['type'] == 'image_qa':
result = self.process_image_question(task['image_path'], task['question'])
elif task['type'] == 'video_analysis':
result = self.process_video_analysis(task['video_path'], task['question'])
else:
result = {"error": "Unsupported task type"}
results.append({
'task_id': task['id'],
'result': result,
'timestamp': time.time()
})
return results
# 使用示例
app = MultimodalAppPrototype("internvl")
result = app.process_image_question("product_image.jpg", "描述这个产品的外观特征")
print(f"分析结果: {result}")
实施效果:
-
开发周期 从月级降到天级
-
技术风险 提前验证
-
产品原型 快速迭代
-
投资决策 科学依据
生态系统与集成
1. 社区与支持
获取帮助:
-
📚 资源导航:GitHub README和分类目录
-
💬 问题讨论:GitHub Issues和社区论坛
-
🔄 更新通知:关注GitHub更新和学术动态
-
📧 联系维护者:通过GitHub页面联系
贡献指南:
-
Fork项目仓库
-
创建特性分支
-
添加新资源或改进
-
提交Pull Request
-
参与资源审核
2. 相关工具集成
HuggingFace集成:
# huggingface_integration.py
from huggingface_hub import HfApi, HfFolder
import requests
import json
class HuggingFaceIntegration:
def __init__(self):
self.api = HfApi()
self.token = HfFolder.get_token()
def search_models(self, query, modality="multimodal", sort="downloads", limit=10):
"""搜索多模态模型"""
models = self.api.list_models(
filter=(
f"task:{modality},"
f"library:transformers,"
f"pipeline_tag:image-to-text"
),
search=query,
sort=sort,
direction=-1,
limit=limit
)
return list(models)
def download_model(self, model_id, local_dir):
"""下载模型到本地"""
from huggingface_hub import snapshot_download
return snapshot_download(
repo_id=model_id,
local_dir=local_dir,
local_dir_use_symlinks=False,
resume_download=True
)
def get_model_info(self, model_id):
"""获取模型详细信息"""
url = f"https://huggingface.co/api/models/{model_id}"
response = requests.get(url)
return response.json()
def get_dataset_info(self, dataset_id):
"""获取数据集信息"""
url = f"https://huggingface.co/api/datasets/{dataset_id}"
response = requests.get(url)
return response.json()
def create_model_card(self, model_info, output_path):
"""生成模型卡片"""
card_template = f"""
---
language: {model_info.get('language', ['en'])[0]}
license: {model_info.get('license', 'apache-2.0')}
tags: {model_info.get('tags', ['multimodal', 'vision-language'])}
---
# {model_info['modelId']}
{model_info.get('description', '多模态大语言模型')}
## 模型详情
- **架构**: {model_info.get('model_type', 'Transformer')}
- **参数量**: {model_info.get('params_size', '7B')}
- **模态**: {model_info.get('modality', ['vision', 'language'])}
- **训练数据**: {model_info.get('training_data', '未指定')}
## 使用方式
python
from transformers import AutoProcessor, AutoModel
processor = AutoProcessor.from_pretrained("{model_info['modelId']}")
model = AutoModel.from_pretrained("{model_info['modelId']}")
## 评估结果
{self._format_metrics(model_info.get('metrics', {}))}
"""
with open(output_path, 'w', encoding='utf-8') as f:
f.write(card_template)
def _format_metrics(self, metrics):
"""格式化评估指标"""
if not metrics:
return "暂无评估数据"
lines = []
for benchmark, scores in metrics.items():
lines.append(f"- **{benchmark}**:")
for metric, value in scores.items():
lines.append(f" - {metric}: {value}")
return "\n".join(lines)
# 使用示例
hf_integration = HuggingFaceIntegration()
models = hf_integration.search_models("vision language", limit=5)
for model in models:
print(f"模型: {model.modelId}, 下载量: {model.downloads}")
学术研究工具集成:
# research_tools.py
import arxiv
import pandas as pd
from datetime import datetime, timedelta
class ResearchTools:
def __init__(self):
self.arxiv_client = arxiv.Client()
def search_arxiv_papers(self, query, max_results=50, days=30):
"""搜索arXiv论文"""
search = arxiv.Search(
query=query,
max_results=max_results,
sort_by=arxiv.SortCriterion.SubmittedDate,
sort_order=arxiv.SortOrder.Descending
)
# 筛选最近发布的论文
cutoff_date = datetime.now() - timedelta(days=days)
recent_papers = []
for result in self.arxiv_client.results(search):
if result.published.replace(tzinfo=None) > cutoff_date:
recent_papers.append({
'title': result.title,
'authors': [author.name for author in result.authors],
'abstract': result.summary,
'published': result.published,
'pdf_url': result.pdf_url,
'primary_category': result.primary_category,
'categories': result.categories
})
return recent_papers
def create_literature_table(self, papers, output_file):
"""生成文献表格"""
df = pd.DataFrame(papers)
df['published'] = pd.to_datetime(df['published']).dt.date
# 保存为Markdown表格
md_table = df.to_markdown(index=False)
with open(output_file, 'w', encoding='utf-8') as f:
f.write("# 多模态LLM文献汇总\n\n")
f.write(f"更新时间: {datetime.now().date()}\n\n")
f.write(md_table)
return df
def generate_bibliography(self, papers, output_file):
"""生成参考文献列表"""
bib_entries = []
for i, paper in enumerate(papers, 1):
authors = " and ".join(paper['authors'])
year = paper['published'].year
title = paper['title']
bib_entry = f"""@article{{multimodal{i},
author = {{{authors}}},
title = {{{{{title}}}}},
year = {{{year}}},
url = {{{paper['pdf_url']}}}
}}"""
bib_entries.append(bib_entry)
with open(output_file, 'w', encoding='utf-8') as f:
f.write("\n\n".join(bib_entries))
return bib_entries
# 使用示例
research_tools = ResearchTools()
papers = research_tools.search_arxiv_papers("multimodal large language models", max_results=20)
research_tools.create_literature_table(papers, "literature_review.md")
3. 扩展开发
资源提交系统:
# contribution_system.py
import json
from pathlib import Path
from datetime import datetime
class ContributionSystem:
def __init__(self, resources_dir="./resources"):
self.resources_dir = Path(resources_dir)
self.resources_dir.mkdir(exist_ok=True)
# 资源类型目录
self.categories = {
"papers": self.resources_dir / "papers",
"models": self.resources_dir / "models",
"datasets": self.resources_dir / "datasets",
"benchmarks": self.resources_dir / "benchmarks",
"tools": self.resources_dir / "tools"
}
for category_dir in self.categories.values():
category_dir.mkdir(exist_ok=True)
def submit_resource(self, resource_type, resource_data):
"""提交新资源"""
if resource_type not in self.categories:
raise ValueError(f"不支持的资源类型: {resource_type}")
# 生成资源ID
resource_id = self._generate_resource_id(resource_type, resource_data)
resource_file = self.categories[resource_type] / f"{resource_id}.json"
# 添加元数据
resource_data['id'] = resource_id
resource_data['submitted_date'] = datetime.now().isoformat()
resource_data['type'] = resource_type
# 保存资源
with open(resource_file, 'w', encoding='utf-8') as f:
json.dump(resource_data, f, indent=2, ensure_ascii=False)
# 更新索引
self._update_index(resource_type, resource_data)
return resource_id
def _generate_resource_id(self, resource_type, resource_data):
"""生成资源ID"""
base_name = resource_data.get('name', '').lower().replace(' ', '-')
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
return f"{resource_type[:3]}-{base_name}-{timestamp}"
def _update_index(self, resource_type, resource_data):
"""更新资源索引"""
index_file = self.categories[resource_type] / "index.json"
if index_file.exists():
with open(index_file, 'r', encoding='utf-8') as f:
index = json.load(f)
else:
index = []
index.append({
'id': resource_data['id'],
'name': resource_data.get('name'),
'date': resource_data['submitted_date'],
'url': resource_data.get('url'),
'tags': resource_data.get('tags', [])
})
with open(index_file, 'w', encoding='utf-8') as f:
json.dump(index, f, indent=2, ensure_ascii=False)
def search_resources(self, query, resource_type=None, tags=None):
"""搜索资源"""
results = []
if resource_type:
categories = [self.categories[resource_type]]
else:
categories = self.categories.values()
for category_dir in categories:
index_file = category_dir / "index.json"
if not index_file.exists():
continue
with open(index_file, 'r', encoding='utf-8') as f:
index = json.load(f)
for item in index:
# 关键词搜索
query_match = (not query or
query.lower() in item.get('name', '').lower() or
any(query.lower() in tag.lower() for tag in item.get('tags', [])))
# 标签筛选
tags_match = (not tags or
all(any(tag.lower() == t.lower() for t in item.get('tags', []))
for tag in tags))
if query_match and tags_match:
# 加载完整资源数据
resource_file = category_dir / f"{item['id']}.json"
if resource_file.exists():
with open(resource_file, 'r', encoding='utf-8') as f:
resource_data = json.load(f)
results.append(resource_data)
return sorted(results, key=lambda x: x['submitted_date'], reverse=True)
# 使用示例
contribution_system = ContributionSystem()
# 提交新论文
paper_data = {
"name": "VITA: Towards Open-Source Interactive Omni Multimodal LLM",
"authors": ["Moonshot AI Team"],
"venue": "arXiv",
"year": 2024,
"url": "https://arxiv.org/abs/2506.13642",
"abstract": "Introducing VITA-1.5, a more powerful and real-time version...",
"tags": ["multimodal", "interactive", "real-time", "open-source"]
}
paper_id = contribution_system.submit_resource("papers", paper_data)
print(f"论文提交成功,ID: {paper_id}")
# 搜索资源
results = contribution_system.search_resources("multimodal", tags=["open-source"])
for result in results:
print(f"找到资源: {result['name']}")
自动化更新检查:
# auto_updater.py
import requests
import schedule
import time
from datetime import datetime
class AutoUpdater:
def __init__(self, check_interval=24): # 默认24小时检查一次
self.check_interval = check_interval
self.last_check = None
self.new_resources = []
def check_for_updates(self):
"""检查资源更新"""
print(f"开始检查更新: {datetime.now()}")
# 检查arXiv新论文
arxiv_updates = self.check_arxiv_updates()
self.new_resources.extend(arxiv_updates)
# 检查HuggingFace新模型
hf_updates = self.check_huggingface_updates()
self.new_resources.extend(hf_updates)
# 检查GitHub新项目
github_updates = self.check_github_updates()
self.new_resources.extend(github_updates)
self.last_check = datetime.now()
if self.new_resources:
print(f"发现 {len(self.new_resources)} 个新资源")
self.send_notification()
else:
print("没有发现新资源")
def check_arxiv_updates(self):
"""检查arXiv更新"""
# 实现arXiv API调用
return []
def check_huggingface_updates(self):
"""检查HuggingFace更新"""
# 实现HuggingFace API调用
return []
def check_github_updates(self):
"""检查GitHub更新"""
# 实现GitHub API调用
return []
def send_notification(self):
"""发送更新通知"""
if not self.new_resources:
return
# 生成通知消息
message = f"多模态LLM资源更新通知\n\n"
message += f"更新时间: {datetime.now()}\n"
message += f"新增资源: {len(self.new_resources)} 个\n\n"
for i, resource in enumerate(self.new_resources[:5], 1):
message += f"{i}. {resource['type']}: {resource['name']}\n"
if 'url' in resource:
message += f" 链接: {resource['url']}\n"
message += "\n"
# 这里可以集成邮件、Slack、微信等通知方式
print("通知内容:\n", message)
def start_scheduler(self):
"""启动定时任务"""
schedule.every(self.check_interval).hours.do(self.check_for_updates)
# 立即执行一次检查
self.check_for_updates()
print(f"更新检查器已启动,每 {self.check_interval} 小时检查一次")
while True:
schedule.run_pending()
time.sleep(60) # 每分钟检查一次任务
# 使用示例
updater = AutoUpdater(check_interval=12) # 12小时检查一次
# updater.start_scheduler() # 取消注释启动定时任务
🌟 GitHub地址:
https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models
🚀 快速开始:
克隆仓库并探索资源分类
📖 详细指南:
查看README获取完整使用说明
Awesome-Multimodal-Large-Language-Models 代表了多模态AI资源整理的先进实践,正如维护者所述:
"通过系统化的资源收集和分类,我们为多模态AI社区提供了全面的参考和学习平台"
该资源库已在多个场景证明其价值:
-
学术研究:快速了解领域最新进展和技术脉络
-
技术选型:科学评估和选择合适的多模态模型
-
项目开发:获取开发所需的数据、代码和工具
-
教学培训:提供完整的学习路径和教学材料
-
行业应用:支持工业界的应用开发和方案选型
立即探索Awesome-MLLM,掌握多模态AI最新动态!
免责声明
⚠️ 重要提示:
-
资源信息来源于公开网络,请遵守相关许可证
-
模型使用请遵循相应的使用条款和法律法规
-
数据使用请注意隐私和版权保护
-
学术引用请遵循学术规范
许可证:
-
项目采用CC-BY-4.0许可证
-
允许分享和改编,需注明出处
-
具体资源请遵循原始许可证
技术支持:
-
📧 问题:通过GitHub Issues报告
-
💬 讨论:参与社区讨论和交流
-
🔄 贡献:欢迎资源贡献和内容改进
-
🌟 星标:支持项目发展
Awesome-MLLM - 多模态AI资源的完整指南 🚀✨
更多推荐



所有评论(0)