简介

Awesome-Multimodal-Large-Language-Models​ 是由BradyFU维护的综合性多模态大语言模型资源集合,涵盖了最新的多模态AI研究进展、模型、数据集和评估基准。该项目系统性地整理了多模态大语言模型领域的最新成果,为研究人员、开发者和学习者提供了全面的参考资料和学习路径。

🔗 ​GitHub地址​:

https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models

⚡ ​核心价值​:

多模态AI · 资源集合 · 研究指南 · 开源学习

项目特色​:

  • 全面性​:涵盖多模态AI各个子领域的最新进展

  • 系统性​:按技术方向和资源类型精心分类整理

  • 及时性​:持续更新最新研究和模型发布

  • 实用性​:提供代码、数据集、评估基准等实用资源

  • 社区驱动​:由社区共同维护和更新内容

  • 多维度​:覆盖模型、数据、评估、应用等多个维度


主要功能

1. ​核心架构

2. ​资源矩阵

资源类别

核心内容

代表性资源

研究论文

最新顶会论文,技术报告,综述文章

VITA, LLaVA, MiniGPT, BLIP系列

开源模型

预训练模型,微调模型,基础模型

InternVL, Qwen-VL, DeepSeek-VL

数据集

训练数据集,评估数据集,合成数据

MME, Video-MME, SEED-Bench

评估基准

性能评估,能力测试,对比分析

MMBench, MMVet, MathVista

代码实现

模型代码,训练代码,推理代码

各模型官方实现,优化版本

工具生态

开发工具,部署工具,监控工具

VLLM, Transformers, Gradio

3. ​技术特性

  • 多模态覆盖​:视觉、语音、视频、3D等多种模态

  • 模型全面​:从基础模型到专用模型的完整谱系

  • 评估体系​:建立完善的多维度评估指标体系

  • 实践导向​:提供可运行的代码和部署方案

  • 社区支持​:活跃的社区讨论和问题解答

  • 持续更新​:跟随技术发展持续更新内容


安装与配置

1. ​环境准备

# 基础环境要求
操作系统: Ubuntu 20.04+, Windows WSL2, macOS 12+
Python: 3.8+ (推荐3.10)
PyTorch: 2.0+
CUDA: 11.7+ (推荐11.8)
GPU: NVIDIA GPU with 8GB+ VRAM

# 推荐配置
GPU: RTX 4090, A100, V100等
显存: 16GB+ VRAM
内存: 32GB+ RAM
存储: 100GB+ SSD空间

# 开发工具
Git: 最新版本
Docker: 20.10+ (可选)
IDE: VSCode, PyCharm等

2. ​基础安装

克隆资源库​:

# 克隆主仓库
git clone https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.git
cd Awesome-Multimodal-Large-Language-Models

# 或使用稀疏检出(只获取特定部分)
git sparse-checkout init --cone
git sparse-checkout set papers models datasets

安装核心依赖​:

# 创建conda环境
conda create -n mllm python=3.10 -y
conda activate mllm

# 安装PyTorch (根据CUDA版本选择)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

# 安装Transformers和相关库
pip install transformers accelerate datasets
pip install openai-whisper timm decord
pip install gradio streamlit huggingface_hub

# 安装视觉相关库
pip install opencv-python pillow matplotlib
pip install scikit-image imageio imageio-ffmpeg

# 安装音频处理库
pip install librosa soundfile pydub
pip install torchaudio audiocraft

# 安装评估工具
pip install evaluate rouge-score bert-score
pip install nltk spacy sentencepiece

模型特定依赖​:

# 安装vLLM用于高效推理
pip install vllm

# 安装FlashAttention用于优化
pip install flash-attn --no-build-isolation

# 安装Deepspeed用于分布式训练
pip install deepspeed

# 安装JAX(某些模型需要)
pip install jax jaxlib

3. ​模型下载

从HuggingFace下载​:

# 安装git-lfs
git lfs install

# 下载流行多模态模型
git clone https://huggingface.co/internlm/internvl-chat
git clone https://huggingface.co/Qwen/Qwen-VL-Chat
git clone https://huggingface.co/DeepSeek-AI/DeepSeek-VL

# 使用huggingface_hub下载
from huggingface_hub import snapshot_download
snapshot_download(repo_id="internlm/internvl-chat", local_dir="./models/internvl")

模型配置示例​:

# config.py - 模型配置管理
MODEL_CONFIGS = {
    "internvl": {
        "repo_id": "internlm/internvl-chat",
        "model_class": "InternVLChatModel",
        "requirements": ["torch", "transformers"],
        "memory_usage": "16GB",
        "supported_modalities": ["image", "text"]
    },
    "qwen-vl": {
        "repo_id": "Qwen/Qwen-VL-Chat",
        "model_class": "QwenVLForConditionalGeneration",
        "requirements": ["torch", "transformers"],
        "memory_usage": "14GB",
        "supported_modalities": ["image", "text"]
    },
    "deepseek-vl": {
        "repo_id": "DeepSeek-AI/DeepSeek-VL",
        "model_class": "DeepSeekVLForConditionalGeneration",
        "requirements": ["torch", "transformers", "flash_attn"],
        "memory_usage": "18GB",
        "supported_modalities": ["image", "text"]
    }
}

def get_model_config(model_name):
    return MODEL_CONFIGS.get(model_name.lower(), {})

4. ​数据准备

下载评估数据集​:

# 创建数据目录
mkdir -p data/benchmarks
cd data/benchmarks

# 下载MME基准
wget https://huggingface.co/datasets/BradyFU/MME/resolve/main/mme_benchmark.zip
unzip mme_benchmark.zip

# 下载SEED-Bench
wget https://huggingface.co/datasets/BradyFU/SEED-Bench/resolve/main/seed_benchmark.tar.gz
tar -xzf seed_benchmark.tar.gz

# 下载Video-MME
git clone https://github.com/BradyFU/Video-MME.git

数据集配置​:

# dataset_config.py - 数据集配置
DATASET_CONFIGS = {
    "mme": {
        "path": "./data/benchmarks/mme",
        "modalities": ["image", "text"],
        "tasks": ["recognition", "grounding", "reasoning"],
        "split": ["test"]
    },
    "seed_bench": {
        "path": "./data/benchmarks/seed_bench",
        "modalities": ["image", "video", "text"],
        "tasks": ["qa", "captioning", "reasoning"],
        "split": ["test"]
    },
    "video_mme": {
        "path": "./data/benchmarks/video_mme",
        "modalities": ["video", "text"],
        "tasks": ["temporal_understanding", "action_recognition"],
        "split": ["test"]
    }
}

使用指南

1. ​基本工作流

2. ​基本使用

快速开始示例​:

# quick_start.py
from transformers import AutoProcessor, AutoModel
import torch
from PIL import Image

# 加载模型和处理器
model_name = "internlm/internvl-chat"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, torch_dtype=torch.float16).cuda()

# 准备输入
image = Image.open("example.jpg")
question = "描述这张图片中的内容"

# 处理输入
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")

# 生成响应
with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=100)

# 解码输出
response = processor.decode(outputs[0], skip_special_tokens=True)
print(f"模型响应: {response}")

批量评估示例​:

# 运行MME评估
python evaluate_mme.py \
  --model_name internvl \
  --model_path ./models/internvl \
  --data_path ./data/benchmarks/mme \
  --output_dir ./results/mme \
  --batch_size 4 \
  --device cuda:0

# 运行SEED-Bench评估
python evaluate_seed.py \
  --model_name qwen-vl \
  --model_path ./models/qwen-vl \
  --data_path ./data/benchmarks/seed_bench \
  --output_dir ./results/seed \
  --tasks all \
  --device cuda:0

Web演示界面​:

# 启动Gradio演示
python demo_gradio.py \
  --model_name internvl \
  --model_path ./models/internvl \
  --port 7860 \
  --share true

# 启动Streamlit演示
streamlit run demo_streamlit.py \
  --model_path ./models/internvl \
  --server.port 8501

3. ​高级功能

多模型对比评估​:

# compare_models.py
import pandas as pd
from evaluation import evaluate_model

def compare_models(models, benchmark_path, output_file):
    results = {}
    
    for model_name, model_path in models.items():
        print(f"评估模型: {model_name}")
        result = evaluate_model(
            model_name=model_name,
            model_path=model_path,
            benchmark_path=benchmark_path
        )
        results[model_name] = result
    
    # 保存结果
    df = pd.DataFrame.from_dict(results, orient='index')
    df.to_csv(output_file, index=True)
    print(f"结果已保存到: {output_file}")
    
    # 生成对比报告
    generate_comparison_report(df, output_file.replace('.csv', '_report.md'))
    
    return df

# 使用示例
models_to_compare = {
    "internvl": "./models/internvl",
    "qwen-vl": "./models/qwen-vl", 
    "deepseek-vl": "./models/deepseek-vl"
}

benchmark_path = "./data/benchmarks/mme"
output_file = "./results/model_comparison.csv"

results_df = compare_models(models_to_compare, benchmark_path, output_file)

自定义评估流程​:

# custom_evaluation.py
from evaluation_metrics import calculate_accuracy, calculate_bleu, calculate_rouge

class CustomEvaluator:
    def __init__(self, model, processor):
        self.model = model
        self.processor = processor
        self.metrics = {
            'accuracy': calculate_accuracy,
            'bleu': calculate_bleu,
            'rouge': calculate_rouge
        }
    
    def evaluate_on_dataset(self, dataset, metrics=['accuracy']):
        results = {}
        
        for item in dataset:
            # 准备输入
            inputs = self.prepare_inputs(item)
            
            # 模型推理
            outputs = self.model.generate(**inputs)
            
            # 后处理
            prediction = self.postprocess_output(outputs)
            
            # 计算指标
            for metric_name in metrics:
                if metric_name in self.metrics:
                    score = self.metrics[metric_name](prediction, item['answer'])
                    results.setdefault(metric_name, []).append(score)
        
        # 汇总结果
        summary = {
            metric_name: sum(scores) / len(scores) 
            for metric_name, scores in results.items()
        }
        
        return summary
    
    def prepare_inputs(self, item):
        # 根据数据类型准备输入
        if 'image' in item:
            image = Image.open(item['image_path'])
            text = item['question']
            return self.processor(images=image, text=text, return_tensors="pt")
        else:
            text = item['question']
            return self.processor(text=text, return_tensors="pt")
    
    def postprocess_output(self, outputs):
        return self.processor.decode(outputs[0], skip_special_tokens=True)

模型微调示例​:

# 微调脚本示例
python finetune_model.py \
  --model_name internvl \
  --model_path ./models/internvl \
  --dataset_path ./data/custom_dataset \
  --output_dir ./finetuned_models/internvl-custom \
  --epochs 10 \
  --batch_size 8 \
  --learning_rate 2e-5 \
  --warmup_steps 100 \
  --logging_steps 50 \
  --save_steps 500

4. ​资源探索

论文研究工具​:

# paper_explorer.py
import json
from datetime import datetime

class PaperExplorer:
    def __init__(self, papers_file="./resources/papers.json"):
        with open(papers_file, 'r', encoding='utf-8') as f:
            self.papers = json.load(f)
    
    def search_papers(self, keywords, venue=None, year=None):
        results = []
        for paper in self.papers:
            # 关键词搜索
            keyword_match = any(keyword.lower() in paper.get('title', '').lower() or 
                               keyword.lower() in paper.get('abstract', '').lower()
                               for keyword in keywords)
            
            # 会议筛选
            venue_match = not venue or paper.get('venue', '').lower() == venue.lower()
            
            # 年份筛选
            year_match = not year or paper.get('year') == year
            
            if keyword_match and venue_match and year_match:
                results.append(paper)
        
        return sorted(results, key=lambda x: x.get('year', 0), reverse=True)
    
    def get_recent_papers(self, days=30):
        recent_cutoff = datetime.now().timestamp() - days * 24 * 60 * 60
        return [paper for paper in self.papers 
                if paper.get('date', 0) > recent_cutoff]
    
    def get_papers_by_venue(self, venue):
        return [paper for paper in self.papers 
                if paper.get('venue', '').lower() == venue.lower()]

# 使用示例
explorer = PaperExplorer()
cvpr_papers = explorer.get_papers_by_venue("CVPR")
recent_multimodal_papers = explorer.search_papers(["multimodal", "vision language"], days=60)

应用场景实例

案例1:多模态研究文献综述

场景​:研究人员需要系统了解多模态大模型最新进展

解决方案​:

实施效果​:

  • 文献调研效率 ​提高5倍

  • 技术脉络 ​清晰把握

  • 研究热点 ​准确识别

  • 知识体系 ​系统建立

案例2:多模态模型性能评估

场景​:企业需要选择合适的多模态模型用于产品开发

解决方案​:

# 模型评估配置
model_evaluation:
  evaluation_benchmarks:
    - name: "MME"
      modalities: ["image", "text"]
      tasks: ["recognition", "grounding", "reasoning"]
      metrics: ["accuracy", "precision", "recall"]
    
    - name: "SEED-Bench" 
      modalities: ["image", "video", "text"]
      tasks: ["qa", "captioning", "reasoning"]
      metrics: ["bleu", "rouge", "accuracy"]
    
    - name: "Video-MME"
      modalities: ["video", "text"]
      tasks: ["temporal_understanding", "action_recognition"]
      metrics: ["accuracy", "f1_score"]
  
  candidate_models:
    - name: "InternVL-Chat"
      parameters: "8B"
      modalities: ["image", "text"]
      strengths: ["强推理能力", "中文优化"]
    
    - name: "Qwen-VL-Chat"
      parameters: "7B" 
      modalities: ["image", "text"]
      strengths: ["多语言支持", "高效推理"]
    
    - name: "DeepSeek-VL"
      parameters: "7B"
      modalities: ["image", "text"]
      strengths: ["长上下文", "强编码能力"]
  
  evaluation_criteria:
    performance: 40%
    efficiency: 25%
    scalability: 20%
    cost: 15%
  
  output_reports:
    - "详细评估报告"
    - "性能对比图表"
    - "推荐建议"
    - "部署方案"

实施效果​:

  • 模型选择 ​科学依据

  • 性能评估 ​全面客观

  • 部署风险 ​提前识别

  • 资源投入 ​优化配置

案例3:学术研究实验复现

场景​:研究生需要复现顶会论文实验并进行改进

解决方案​:

  1. 论文选择​:选择目标论文和基线模型

  2. 环境配置​:搭建复现所需的软件环境

  3. 代码获取​:获取论文官方代码或社区实现

  4. 数据准备​:准备训练和评估数据集

  5. 实验运行​:运行基线实验并验证结果

  6. 改进实验​:实现改进方法并进行对比实验

  7. 结果分析​:分析实验结果并撰写论文

复现工作流​:

# 1. 选择论文和模型
论文: "VITA: Towards Open-Source Interactive Omni Multimodal LLM"
模型: "VITA-1.5"

# 2. 搭建环境
git clone https://github.com/MoonshotAI/VITA.git
cd VITA
conda create -n vita python=3.10 -y
conda activate vita
pip install -r requirements.txt

# 3. 下载模型权重
wget https://huggingface.co/MoonshotAI/VITA-1.5/resolve/main/model.safetensors
wget https://huggingface.co/MoonshotAI/VITA-1.5/resolve/main/config.json

# 4. 准备数据
mkdir -p data
wget https://huggingface.co/datasets/MoonshotAI/VITA-Demo/resolve/main/demo_data.zip
unzip demo_data.zip -d data/

# 5. 运行推理演示
python demo.py --model_path ./model.safetensors --data_dir ./data

# 6. 运行评估
python evaluate.py --model_path ./model.safetensors --benchmark MME

# 7. 实现改进
# 在原有代码基础上实现改进方法
python train_improved.py --base_model ./model.safetensors --output_dir ./improved_model

实施效果​:

  • 复现效率 ​显著提高

  • 实验结果 ​可靠验证

  • 研究方法 ​深入掌握

  • 论文质量 ​明显提升

案例4:工业应用原型开发

场景​:创业公司需要开发多模态AI应用原型

解决方案​:

# 工业应用原型开发框架
class MultimodalAppPrototype:
    def __init__(self, model_name, device="cuda:0"):
        self.model_name = model_name
        self.device = device
        self.model = None
        self.processor = None
        self.setup_model()
    
    def setup_model(self):
        """根据模型名称加载相应的模型和处理器"""
        if self.model_name == "internvl":
            from transformers import AutoProcessor, AutoModel
            self.processor = AutoProcessor.from_pretrained("internlm/internvl-chat")
            self.model = AutoModel.from_pretrained("internlm/internvl-chat", torch_dtype=torch.float16).to(self.device)
        
        elif self.model_name == "qwen-vl":
            from transformers import AutoProcessor, AutoModel
            self.processor = AutoProcessor.from_pretrained("Qwen/Qwen-VL-Chat")
            self.model = AutoModel.from_pretrained("Qwen/Qwen-VL-Chat", torch_dtype=torch.float16).to(self.device)
        
        elif self.model_name == "deepseek-vl":
            from deepseek_vl import DeepSeekVLProcessor, DeepSeekVLForConditionalGeneration
            self.processor = DeepSeekVLProcessor.from_pretrained("DeepSeek-AI/DeepSeek-VL")
            self.model = DeepSeekVLForConditionalGeneration.from_pretrained("DeepSeek-AI/DeepSeek-VL", torch_dtype=torch.float16).to(self.device)
    
    def process_image_question(self, image_path, question):
        """处理图像问答任务"""
        from PIL import Image
        
        image = Image.open(image_path)
        inputs = self.processor(images=image, text=question, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            outputs = self.model.generate(**inputs, max_new_tokens=100)
        
        response = self.processor.decode(outputs[0], skip_special_tokens=True)
        return response
    
    def process_video_analysis(self, video_path, question):
        """处理视频分析任务"""
        # 视频帧提取和分析
        frames = self.extract_video_frames(video_path)
        responses = []
        
        for frame in frames:
            response = self.process_image_question(frame, question)
            responses.append(response)
        
        # 综合所有帧的分析结果
        final_response = self.aggregate_responses(responses)
        return final_response
    
    def batch_process(self, task_list):
        """批量处理任务"""
        results = []
        for task in task_list:
            if task['type'] == 'image_qa':
                result = self.process_image_question(task['image_path'], task['question'])
            elif task['type'] == 'video_analysis':
                result = self.process_video_analysis(task['video_path'], task['question'])
            else:
                result = {"error": "Unsupported task type"}
            
            results.append({
                'task_id': task['id'],
                'result': result,
                'timestamp': time.time()
            })
        
        return results

# 使用示例
app = MultimodalAppPrototype("internvl")
result = app.process_image_question("product_image.jpg", "描述这个产品的外观特征")
print(f"分析结果: {result}")

实施效果​:

  • 开发周期 ​从月级降到天级

  • 技术风险 ​提前验证

  • 产品原型 ​快速迭代

  • 投资决策 ​科学依据


生态系统与集成

1. ​社区与支持

获取帮助​:

  • 📚 ​资源导航​:GitHub README和分类目录

  • 💬 ​问题讨论​:GitHub Issues和社区论坛

  • 🔄 ​更新通知​:关注GitHub更新和学术动态

  • 📧 ​联系维护者​:通过GitHub页面联系

贡献指南​:

  1. Fork项目仓库

  2. 创建特性分支

  3. 添加新资源或改进

  4. 提交Pull Request

  5. 参与资源审核

2. ​相关工具集成

HuggingFace集成​:

# huggingface_integration.py
from huggingface_hub import HfApi, HfFolder
import requests
import json

class HuggingFaceIntegration:
    def __init__(self):
        self.api = HfApi()
        self.token = HfFolder.get_token()
    
    def search_models(self, query, modality="multimodal", sort="downloads", limit=10):
        """搜索多模态模型"""
        models = self.api.list_models(
            filter=(
                f"task:{modality},"
                f"library:transformers,"
                f"pipeline_tag:image-to-text"
            ),
            search=query,
            sort=sort,
            direction=-1,
            limit=limit
        )
        return list(models)
    
    def download_model(self, model_id, local_dir):
        """下载模型到本地"""
        from huggingface_hub import snapshot_download
        
        return snapshot_download(
            repo_id=model_id,
            local_dir=local_dir,
            local_dir_use_symlinks=False,
            resume_download=True
        )
    
    def get_model_info(self, model_id):
        """获取模型详细信息"""
        url = f"https://huggingface.co/api/models/{model_id}"
        response = requests.get(url)
        return response.json()
    
    def get_dataset_info(self, dataset_id):
        """获取数据集信息"""
        url = f"https://huggingface.co/api/datasets/{dataset_id}"
        response = requests.get(url)
        return response.json()
    
    def create_model_card(self, model_info, output_path):
        """生成模型卡片"""
        card_template = f"""
---
language: {model_info.get('language', ['en'])[0]}
license: {model_info.get('license', 'apache-2.0')}
tags: {model_info.get('tags', ['multimodal', 'vision-language'])}
---

# {model_info['modelId']}

{model_info.get('description', '多模态大语言模型')}

## 模型详情

- **架构**: {model_info.get('model_type', 'Transformer')}
- **参数量**: {model_info.get('params_size', '7B')}
- **模态**: {model_info.get('modality', ['vision', 'language'])}
- **训练数据**: {model_info.get('training_data', '未指定')}

## 使用方式

python

from transformers import AutoProcessor, AutoModel

processor = AutoProcessor.from_pretrained("{model_info['modelId']}")

model = AutoModel.from_pretrained("{model_info['modelId']}")

## 评估结果

{self._format_metrics(model_info.get('metrics', {}))}
"""
        
        with open(output_path, 'w', encoding='utf-8') as f:
            f.write(card_template)
    
    def _format_metrics(self, metrics):
        """格式化评估指标"""
        if not metrics:
            return "暂无评估数据"
        
        lines = []
        for benchmark, scores in metrics.items():
            lines.append(f"- **{benchmark}**:")
            for metric, value in scores.items():
                lines.append(f"  - {metric}: {value}")
        return "\n".join(lines)

# 使用示例
hf_integration = HuggingFaceIntegration()
models = hf_integration.search_models("vision language", limit=5)
for model in models:
    print(f"模型: {model.modelId}, 下载量: {model.downloads}")

学术研究工具集成​:

# research_tools.py
import arxiv
import pandas as pd
from datetime import datetime, timedelta

class ResearchTools:
    def __init__(self):
        self.arxiv_client = arxiv.Client()
    
    def search_arxiv_papers(self, query, max_results=50, days=30):
        """搜索arXiv论文"""
        search = arxiv.Search(
            query=query,
            max_results=max_results,
            sort_by=arxiv.SortCriterion.SubmittedDate,
            sort_order=arxiv.SortOrder.Descending
        )
        
        # 筛选最近发布的论文
        cutoff_date = datetime.now() - timedelta(days=days)
        recent_papers = []
        
        for result in self.arxiv_client.results(search):
            if result.published.replace(tzinfo=None) > cutoff_date:
                recent_papers.append({
                    'title': result.title,
                    'authors': [author.name for author in result.authors],
                    'abstract': result.summary,
                    'published': result.published,
                    'pdf_url': result.pdf_url,
                    'primary_category': result.primary_category,
                    'categories': result.categories
                })
        
        return recent_papers
    
    def create_literature_table(self, papers, output_file):
        """生成文献表格"""
        df = pd.DataFrame(papers)
        df['published'] = pd.to_datetime(df['published']).dt.date
        
        # 保存为Markdown表格
        md_table = df.to_markdown(index=False)
        with open(output_file, 'w', encoding='utf-8') as f:
            f.write("# 多模态LLM文献汇总\n\n")
            f.write(f"更新时间: {datetime.now().date()}\n\n")
            f.write(md_table)
        
        return df
    
    def generate_bibliography(self, papers, output_file):
        """生成参考文献列表"""
        bib_entries = []
        
        for i, paper in enumerate(papers, 1):
            authors = " and ".join(paper['authors'])
            year = paper['published'].year
            title = paper['title']
            
            bib_entry = f"""@article{{multimodal{i},
    author = {{{authors}}},
    title = {{{{{title}}}}},
    year = {{{year}}},
    url = {{{paper['pdf_url']}}}
}}"""
            bib_entries.append(bib_entry)
        
        with open(output_file, 'w', encoding='utf-8') as f:
            f.write("\n\n".join(bib_entries))
        
        return bib_entries

# 使用示例
research_tools = ResearchTools()
papers = research_tools.search_arxiv_papers("multimodal large language models", max_results=20)
research_tools.create_literature_table(papers, "literature_review.md")

3. ​扩展开发

资源提交系统​:

# contribution_system.py
import json
from pathlib import Path
from datetime import datetime

class ContributionSystem:
    def __init__(self, resources_dir="./resources"):
        self.resources_dir = Path(resources_dir)
        self.resources_dir.mkdir(exist_ok=True)
        
        # 资源类型目录
        self.categories = {
            "papers": self.resources_dir / "papers",
            "models": self.resources_dir / "models",
            "datasets": self.resources_dir / "datasets",
            "benchmarks": self.resources_dir / "benchmarks",
            "tools": self.resources_dir / "tools"
        }
        
        for category_dir in self.categories.values():
            category_dir.mkdir(exist_ok=True)
    
    def submit_resource(self, resource_type, resource_data):
        """提交新资源"""
        if resource_type not in self.categories:
            raise ValueError(f"不支持的资源类型: {resource_type}")
        
        # 生成资源ID
        resource_id = self._generate_resource_id(resource_type, resource_data)
        resource_file = self.categories[resource_type] / f"{resource_id}.json"
        
        # 添加元数据
        resource_data['id'] = resource_id
        resource_data['submitted_date'] = datetime.now().isoformat()
        resource_data['type'] = resource_type
        
        # 保存资源
        with open(resource_file, 'w', encoding='utf-8') as f:
            json.dump(resource_data, f, indent=2, ensure_ascii=False)
        
        # 更新索引
        self._update_index(resource_type, resource_data)
        
        return resource_id
    
    def _generate_resource_id(self, resource_type, resource_data):
        """生成资源ID"""
        base_name = resource_data.get('name', '').lower().replace(' ', '-')
        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
        return f"{resource_type[:3]}-{base_name}-{timestamp}"
    
    def _update_index(self, resource_type, resource_data):
        """更新资源索引"""
        index_file = self.categories[resource_type] / "index.json"
        
        if index_file.exists():
            with open(index_file, 'r', encoding='utf-8') as f:
                index = json.load(f)
        else:
            index = []
        
        index.append({
            'id': resource_data['id'],
            'name': resource_data.get('name'),
            'date': resource_data['submitted_date'],
            'url': resource_data.get('url'),
            'tags': resource_data.get('tags', [])
        })
        
        with open(index_file, 'w', encoding='utf-8') as f:
            json.dump(index, f, indent=2, ensure_ascii=False)
    
    def search_resources(self, query, resource_type=None, tags=None):
        """搜索资源"""
        results = []
        
        if resource_type:
            categories = [self.categories[resource_type]]
        else:
            categories = self.categories.values()
        
        for category_dir in categories:
            index_file = category_dir / "index.json"
            if not index_file.exists():
                continue
            
            with open(index_file, 'r', encoding='utf-8') as f:
                index = json.load(f)
            
            for item in index:
                # 关键词搜索
                query_match = (not query or 
                              query.lower() in item.get('name', '').lower() or
                              any(query.lower() in tag.lower() for tag in item.get('tags', [])))
                
                # 标签筛选
                tags_match = (not tags or 
                             all(any(tag.lower() == t.lower() for t in item.get('tags', [])) 
                                 for tag in tags))
                
                if query_match and tags_match:
                    # 加载完整资源数据
                    resource_file = category_dir / f"{item['id']}.json"
                    if resource_file.exists():
                        with open(resource_file, 'r', encoding='utf-8') as f:
                            resource_data = json.load(f)
                        results.append(resource_data)
        
        return sorted(results, key=lambda x: x['submitted_date'], reverse=True)

# 使用示例
contribution_system = ContributionSystem()

# 提交新论文
paper_data = {
    "name": "VITA: Towards Open-Source Interactive Omni Multimodal LLM",
    "authors": ["Moonshot AI Team"],
    "venue": "arXiv",
    "year": 2024,
    "url": "https://arxiv.org/abs/2506.13642",
    "abstract": "Introducing VITA-1.5, a more powerful and real-time version...",
    "tags": ["multimodal", "interactive", "real-time", "open-source"]
}

paper_id = contribution_system.submit_resource("papers", paper_data)
print(f"论文提交成功,ID: {paper_id}")

# 搜索资源
results = contribution_system.search_resources("multimodal", tags=["open-source"])
for result in results:
    print(f"找到资源: {result['name']}")

自动化更新检查​:

# auto_updater.py
import requests
import schedule
import time
from datetime import datetime

class AutoUpdater:
    def __init__(self, check_interval=24):  # 默认24小时检查一次
        self.check_interval = check_interval
        self.last_check = None
        self.new_resources = []
    
    def check_for_updates(self):
        """检查资源更新"""
        print(f"开始检查更新: {datetime.now()}")
        
        # 检查arXiv新论文
        arxiv_updates = self.check_arxiv_updates()
        self.new_resources.extend(arxiv_updates)
        
        # 检查HuggingFace新模型
        hf_updates = self.check_huggingface_updates()
        self.new_resources.extend(hf_updates)
        
        # 检查GitHub新项目
        github_updates = self.check_github_updates()
        self.new_resources.extend(github_updates)
        
        self.last_check = datetime.now()
        
        if self.new_resources:
            print(f"发现 {len(self.new_resources)} 个新资源")
            self.send_notification()
        else:
            print("没有发现新资源")
    
    def check_arxiv_updates(self):
        """检查arXiv更新"""
        # 实现arXiv API调用
        return []
    
    def check_huggingface_updates(self):
        """检查HuggingFace更新"""
        # 实现HuggingFace API调用
        return []
    
    def check_github_updates(self):
        """检查GitHub更新"""
        # 实现GitHub API调用
        return []
    
    def send_notification(self):
        """发送更新通知"""
        if not self.new_resources:
            return
        
        # 生成通知消息
        message = f"多模态LLM资源更新通知\n\n"
        message += f"更新时间: {datetime.now()}\n"
        message += f"新增资源: {len(self.new_resources)} 个\n\n"
        
        for i, resource in enumerate(self.new_resources[:5], 1):
            message += f"{i}. {resource['type']}: {resource['name']}\n"
            if 'url' in resource:
                message += f"   链接: {resource['url']}\n"
            message += "\n"
        
        # 这里可以集成邮件、Slack、微信等通知方式
        print("通知内容:\n", message)
    
    def start_scheduler(self):
        """启动定时任务"""
        schedule.every(self.check_interval).hours.do(self.check_for_updates)
        
        # 立即执行一次检查
        self.check_for_updates()
        
        print(f"更新检查器已启动,每 {self.check_interval} 小时检查一次")
        while True:
            schedule.run_pending()
            time.sleep(60)  # 每分钟检查一次任务

# 使用示例
updater = AutoUpdater(check_interval=12)  # 12小时检查一次
# updater.start_scheduler()  # 取消注释启动定时任务

🌟 ​GitHub地址​:

https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models

🚀 ​快速开始​:

克隆仓库并探索资源分类

📖 ​详细指南​:

查看README获取完整使用说明

Awesome-Multimodal-Large-Language-Models​ 代表了多模态AI资源整理的先进实践,正如维护者所述:

"通过系统化的资源收集和分类,我们为多模态AI社区提供了全面的参考和学习平台"

该资源库已在多个场景证明其价值:

  • 学术研究​:快速了解领域最新进展和技术脉络

  • 技术选型​:科学评估和选择合适的多模态模型

  • 项目开发​:获取开发所需的数据、代码和工具

  • 教学培训​:提供完整的学习路径和教学材料

  • 行业应用​:支持工业界的应用开发和方案选型

立即探索Awesome-MLLM,掌握多模态AI最新动态!​

免责声明

⚠️ ​重要提示​:

  • 资源信息来源于公开网络,请遵守相关许可证

  • 模型使用请遵循相应的使用条款和法律法规

  • 数据使用请注意隐私和版权保护

  • 学术引用请遵循学术规范

许可证​:

  • 项目采用CC-BY-4.0许可证

  • 允许分享和改编,需注明出处

  • 具体资源请遵循原始许可证

技术支持​:

  • 📧 问题:通过GitHub Issues报告

  • 💬 讨论:参与社区讨论和交流

  • 🔄 贡献:欢迎资源贡献和内容改进

  • 🌟 星标:支持项目发展


Awesome-MLLM - 多模态AI资源的完整指南​ 🚀✨

Logo

更多推荐