RRT是一种多维空间中有效率的规划方法。它以一个初始点作为根节点,通过随机采样增加叶子节点的方式,生成一个随机扩展树,当随机树中的叶子节点包含了目标点或进入了目标区域,便可以在随机树中找到一条由从初始点到目标点的路径,是一种单查询算法目标是尽可能快的找到一条从起点到终点的可行路径

在这里插入图片描述

  1. 算法通常将起点作为根节点 x o x_o xo加入到随机树的节点集合中
  2. 在可行区域内随机选取一个节点 x r x_r xr,并在已生成的树中利用欧氏距离判断距离 x r x_r xr最近的点 x n x_n xn
  3. x r x_r xr x n x_n xn的方向上扩展固定步长为u的线段(如果两个节点之间的距离小于u,直接把节点 x r x_r xr当作新的节点),得到新的节点 x N x_N xN,如果新的节点和 x N x_N xN之间没有障碍物就将这个新节点加入到树中,并对节点的父节点进行设置。
  4. 若两个节点之间有障碍物,就重新选择节点进行扩展
  5. 循环执行以上步骤,直到随机树的叶节点包含了目标点,并从中找出一条各节点连接成的从起点至终点的无碰撞路径
    伪码如图所示
    在这里插入图片描述
import math
import random

import matplotlib.pyplot as plt
import numpy as np
from celluloid import Camera  # 保存动图时用,pip install celluloid




class RRT:
    """
    Class for RRT planning
    """

    class Node:
        """
        创建节点
        """

        def __init__(self, x, y):
            self.x = x  # 节点坐标
            self.y = y
            self.path_x = [] # 路径,作为画图的数据
            self.path_y = []
            self.parent = None #父节点

    class AreaBounds:
        """区域大小
        """
        def __init__(self, area):
            self.xmin = float(area[0])
            self.xmax = float(area[1])
            self.ymin = float(area[2])
            self.ymax = float(area[3])

    def __init__(self,
            start,
            goal,
            obstacle_list,
            rand_area,
            expand_dis=3.0,
            goal_sample_rate=5,
            max_iter=500,
            play_area=None,
            robot_radius=0.0,
            ):
        """
        Setting Parameter

        start:起点 [x,y]
        goal:目标点 [x,y]
        obstacleList:障碍物位置列表 [[x,y,size],...]
        rand_area: 采样区域 x,y ∈ [min,max]
        play_area: 约束随机树的范围 [xmin,xmax,ymin,ymax]
        robot_radius: 机器人半径
        expand_dis: 扩展的步长
        goal_sample_rate: 采样目标点的概率,百分制.default: 5,即表示5%的概率直接采样目标点

        """
        self.start = self.Node(start[0], start[1]) # 根节点
        self.end = self.Node(goal[0], goal[1]) 
        self.min_rand = rand_area[0]
        self.max_rand = rand_area[1]
        if play_area is not None:
            self.play_area = self.AreaBounds(play_area)
        else:
            self.play_area = None
        self.expand_dis = expand_dis
        self.goal_sample_rate = goal_sample_rate
        self.max_iter = max_iter
        self.obstacle_list = obstacle_list
        self.node_list = []
        self.robot_radius = robot_radius

    def planning(self, animation=True,camara=None):
        """
        rrt path planning

        animation: flag for animation on or off

        camara: 是否保存动图
        """

        # 将起点作为根节点x_{init}​,加入到随机树的节点集合中。
        self.node_list = [self.start]
        for i in range(self.max_iter):
            # 从可行区域内随机选取一个节点x_{rand}
            rnd_node = self.sample_free()  

            # 已生成的树中利用欧氏距离判断距离x_{rand}​最近的点x_{near}。
            nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node)
            nearest_node = self.node_list[nearest_ind]  

            # 从x_{near}与x_{rand}的连线方向上扩展固定步长u,得到新节点 x_{new}
            new_node = self.steer(nearest_node, rnd_node, self.expand_dis)
            
            # 如果在可行区域内,且x_{near}与x_{new}之间无障碍物
            if self.is_inside_play_area(new_node, self.play_area) and \
               self.obstacle_free(new_node, self.obstacle_list, self.robot_radius):
                self.node_list.append(new_node)


            
            # 如果此时得到的节点x_new到目标点的距离小于扩展步长,则直接将目标点作为x_rand。
            if self.calc_dist_to_goal(self.node_list[-1].x,self.node_list[-1].y) <= self.expand_dis:
                final_node = self.steer(self.node_list[-1], self.end,self.expand_dis)
                if self.obstacle_free(final_node, self.obstacle_list, self.robot_radius):
                    # 返回最终路径
                    return self.generate_final_course(len(self.node_list) - 1)

            if animation and i % 5 ==0:
                self.draw_graph(rnd_node, camara)

        return None  # cannot find path

    def steer(self, from_node, to_node, extend_length=float("inf")):
        """连线方向扩展固定步长查找x_new

        Args:
            from_node (_type_): x_near
            to_node (_type_): x_rand
            extend_length (_type_, optional): 扩展步长u. Defaults to float("inf").

        Returns:
            _type_: _description_
        """
        # 利用反正切计算角度, 然后利用角度和步长计算新坐标
        d, theta = self.calc_distance_and_angle(from_node, to_node)

        # 如果$x_{near}$与$x_{rand}$间的距离小于步长,则直接将$x_{rand}$作为新节点$x_{new}$
        if extend_length >= d:
            new_x = to_node.x
            new_y = to_node.y
        else:
            new_x = from_node.x+math.cos(theta)*extend_length
            new_y = from_node.y+math.sin(theta)*extend_length
        new_node = self.Node(new_x,new_y)
        new_node.path_x = [from_node.x]
        new_node.path_y = [from_node.y]
        new_node.path_x.append(new_x)
        new_node.path_y.append(new_y)

        new_node.parent = from_node

        return new_node



    def generate_final_course(self, goal_ind):
        """生成路径
        Args:
            goal_ind (_type_): 目标点索引

        Returns:
            _type_: _description_
        """
        path = [[self.end.x, self.end.y]]
        node = self.node_list[goal_ind]
        while node.parent is not None:
            path.append([node.x, node.y])
            node = node.parent
        path.append([node.x, node.y])

        return path

    def calc_dist_to_goal(self, x, y):
        """计算(x,y)离目标点的距离
        """
        dx = x - self.end.x
        dy = y - self.end.y
        return math.hypot(dx, dy)

    def sample_free(self):
        # 以(100-goal_sample_rate)%的概率随机生长,(goal_sample_rate)%的概率朝向目标点生长
        if random.randint(0, 100) > self.goal_sample_rate:
            rnd = self.Node(
                random.uniform(self.min_rand, self.max_rand),
                random.uniform(self.min_rand, self.max_rand))
        else:  # goal point sampling
            rnd = self.Node(self.end.x, self.end.y)
        return rnd

    def draw_graph(self, rnd=None, camera=None):
        if camera==None:
            plt.clf()
        # for stopping simulation with the esc key.
        plt.gcf().canvas.mpl_connect(
            'key_release_event',
            lambda event: [exit(0) if event.key == 'escape' else None])
        # 画随机点
        if rnd is not None:
            plt.plot(rnd.x, rnd.y, "^k")
            if self.robot_radius > 0.0:
                self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r')
        # 画已生成的树
        for node in self.node_list:
            if node.parent:
                plt.plot(node.path_x, node.path_y, "-g")

        # 画障碍物
        for (ox, oy, size) in self.obstacle_list:
            self.plot_circle(ox, oy, size)

        # 如果约定了可行区域,则画出可行区域
        if self.play_area is not None:
            plt.plot([self.play_area.xmin, self.play_area.xmax,
                self.play_area.xmax, self.play_area.xmin,
                self.play_area.xmin],
                [self.play_area.ymin, self.play_area.ymin,
                self.play_area.ymax, self.play_area.ymax,
                self.play_area.ymin],
                "-k")

        # 画出起点和目标点
        plt.plot(self.start.x, self.start.y, "xr")
        plt.plot(self.end.x, self.end.y, "xr")
        plt.axis("equal")
        plt.axis([-2, 15, -2, 15])
        plt.grid(True)
        plt.pause(0.01)
        if camera!=None:
            camera.snap()
    # 静态方法无需实例化,也可以实例化后调用,静态方法内部不能调用self.的变量
    @staticmethod
    def plot_circle(x, y, size, color="-b"):  # pragma: no cover
        deg = list(range(0, 360, 5))
        deg.append(0)
        xl = [x + size * math.cos(np.deg2rad(d)) for d in deg]
        yl = [y + size * math.sin(np.deg2rad(d)) for d in deg]
        plt.plot(xl, yl, color)

    @staticmethod
    def get_nearest_node_index(node_list, rnd_node):
        dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2
                 for node in node_list]
        minind = dlist.index(min(dlist))

        return minind

    @staticmethod
    def is_inside_play_area(node, play_area):

        if play_area is None:
            return True  # no play_area was defined, every pos should be ok

        if node.x < play_area.xmin or node.x > play_area.xmax or \
           node.y < play_area.ymin or node.y > play_area.ymax:
            return False  # outside - bad
        else:
            return True  # inside - ok

    @staticmethod
    def obstacle_free(node, obstacleList, robot_radius):

        if node is None:
            return False

        for (ox, oy, size) in obstacleList:
            dx_list = [ox - x for x in node.path_x]
            dy_list = [oy - y for y in node.path_y]
            d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)]

            if min(d_list) <= (size+robot_radius)**2:
                return False  # collision

        return True  # safe

    @staticmethod
    def calc_distance_and_angle(from_node, to_node):
        """计算两个节点间的距离和方位角

        Args:
            from_node (_type_): _description_
            to_node (_type_): _description_

        Returns:
            _type_: _description_
        """
        dx = to_node.x - from_node.x
        dy = to_node.y - from_node.y
        d = math.hypot(dx, dy)
        theta = math.atan2(dy, dx)
        return d, theta


def main(gx=6.0, gy=10.0):
    print("start " + __file__)
    fig = plt.figure(1)

    camera = Camera(fig) # 保存动图时使用
    camera = None # 不保存动图时,camara为None
    show_animation = True
    # ====Search Path with RRT====
    obstacleList = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2),
                    (9, 5, 2), (8, 10, 1)]  # [x, y, radius]
    # Set Initial parameters
    rrt = RRT(
        start=[0, 0],
        goal=[gx, gy],
        rand_area=[-2, 15],
        obstacle_list=obstacleList,
        play_area=[-2, 12, 0, 14],
        robot_radius=0.8
    )
    path = rrt.planning(animation=show_animation,camara=camera)

    if path is None:
        print("Cannot find path")
    else:
        print("found path!!")

        # Draw final path
        if show_animation:
            rrt.draw_graph(camera=camera)
            plt.grid(True)
            plt.pause(0.01)  
            plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
            if camera!=None:
                camera.snap()
                animation = camera.animate()
                animation.save('trajectory.gif')
            plt.show()


if __name__ == '__main__':
    main()


RRT算法是
u k u_k uk

点击阅读全文
Logo

分享最新的 NVIDIA AI Software 资源以及活动/会议信息,精选收录AI相关技术内容,欢迎大家加入社区并参与讨论。

更多推荐