目录

一、部署 CNI 网络组件

1. flannel 

1)K8S 中 Pod 网络通信:

2)Overlay Network:

3)VXLAN 即 Virtual Extensible LAN(虚拟可扩展局域网):

4)Flannel:

5)Flannel UDP 模式的工作原理:

6)VXLAN 模式:

6)Flannel VXLAN 模式跨主机的工作原理:

2.部署flannel

二、部署 Calico

1.k8s 组网方案对比:

2.Calico 主要由以下几个部分组成:

3.Calico 工作原理:

4.部署 Calico

三、部署 CoreDNS

1.在所有 node 节点上操作

1.master02 节点部署

五、负载均衡部署


一、部署 CNI 网络组件

1. flannel 

1)K8S 中 Pod 网络通信:

●Pod 内容器与容器之间的通信
在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命名空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 cni0/docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

2)Overlay Network:

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来。
通过Overlay技术(可以理解成隧道技术),在原始报文外再包一层四层协议(UDP协议),通过主机网络进行路由转发。这种方式性能有一定损耗,主要体现在对原始报文的修改。目前Overlay主要采用VXLAN。

3)VXLAN 即 Virtual Extensible LAN(虚拟可扩展局域网):

是一种网络虚拟化技术,它使用一种隧道协议,将二层以太网帧封装在四层UDP报文中,通过三层网络传输,组成一个虚拟大二层网络,到达目的地后由隧道端点解封装并将数据发送给目标地址。从而实现分布在不同的宿主机上的虚拟机或者容器就像在同一个局域网(LAN)里那样自由通信。

4)Flannel:

Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 UDP、VXLAN、Host-gw 3种数据转发方式。

5)Flannel UDP 模式的工作原理:

1、数据从主机A 上 Pod 的源容器中发出后,经由所在主机的 cni0/docker0 网桥转发到 flannel0 接口,flanneld 服务监听在 flannel0 接口的另外一端。
2、发送给 flannel0 接口的 IP 包信息将被 flanneld 进程接收,flanneld 进程接收 IP 包后在原有的基础上进行 UDP 封包
3、Flannel 通过 etcd 服务维护了一张节点间的路由表。目标容器所在宿主机的 IP 地址,flanneld 通过查询 etcd 很容易就能得到
4、flanneld 将封装好的 UDP 报文通过物理网卡转发出去,主机B 收到 UDP 报文后,Linux 内核通过 8285 端口将包交给正在监听的 flanneld 进程
5、运行在主机B 上的 flanneld 将 UDP 包解包后得到原始 IP 包,内核通过查询本机路由表将该 IP 包转发给 cni0 网桥
6、cni0 网桥将 IP 包转发给连接在网桥上的目标Pod。至此整个流程结束。回程报文将按照上面的数据流原路返回

#etcd 之 Flanneld 提供说明:
存储管理 Flannel 可分配的IP地址段资源
监控 etcd 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表


由于在 UDP 模式下 flanneld 进行网络的封包和解包工作,而 VXLAN 模式下封包解包的工作由内核完成,因此性能上 UDP 模式会比在内核态做转发的 VXLAN 模式差。

6)VXLAN 模式:

VXLAN 模式是 Flannel 默认和推荐的模式,flannel 会为每个节点分配一个 24 位子网,并在每个节点上创建两张虚机网卡:cni0 和 flannel.1 。 cni0 是一个网桥设备,类似于 docker0 ,节点上所有的 Pod 都通过 veth pair 的形式与 cni0 相连。 flannel.1 则是一个 VXLAN 类型的设备,充当 VTEP 设备(VXLAN Tunnel Endpoint)的角色,实现对 VXLAN 报文的封包解包。

在 VXLAN 模式下,flanneld 启动时先确保 VXLAN 设备已存在,如果不存在则创建,存在则跳过。并将 VTEP 设备的信息上报到 etcd 中,当 flannel 网络有新节点加入集群时并向 etcd 注册,各节点上的 flanneld 会从 etcd 得到通知。

UDP 模式的 flannel0 网卡是三层转发,使用 flannel0 是在物理网络之上构建三层网络,属于 ip in udp ;VXLAN 模式是二层实现,overlay 是数据帧,属于 mac in udp 。

6)Flannel VXLAN 模式跨主机的工作原理:

1、数据帧从主机 A 上 Pod 的源容器中发出后,经由所在主机的 cni0 网络接口转发到 flannel.1 接口
2、flannel.1 收到数据帧后添加 VXLAN 头部,封装成 VXLAN UDP 报文
3、主机 A 通过物理网卡发送封包到主机 B 的物理网卡中
4、通过 VXLAN 8472 端口,VXLAN 包被转发到 flannel.1 接口进行解封装
5、根据解包后得到的原始报文中的目的IP,内核将原始报文发送给 cni0,最后由 cni0 发送给连接在此接口上的PodB

2.部署flannel

//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v1.3.0.tgz 和 flannel镜像文件 到 /opt 目录中
cd /opt/
docker load -i flannel.tar
docker load -i flannel-cni-plugin.tar

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz -C /opt/cni/bin

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-flannel
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.15

ip -d a show flannel.1   #在node上查看flannel.1的端口


二、部署 Calico

1.k8s 组网方案对比:

●flannel方案
需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

●calico方案
Calico不使用隧道或NAT来实现转发,而是把每个操作系统的协议栈认为是一个路由器,然后把所有的容器认为是连在这个路由器上的网络终端,在路由器之间跑标准的路由协议——BGP的协议,然后让它们自己去学习这个网络拓扑该如何转发。
它不使用 cni0 网桥,而是通过路由规则把数据包直接发送到目标节点的网卡,所以性能高。

#Calico 的模式:
●IPIP 模式:在原有 IP 报文中封装一个新的 IP 报文,新的 IP 报文中将源地址 IP 和目的地址 IP 都修改为对端宿主机 IP。Calico 默认使用 IPIP 的模式。
●BGP 模式:将节点做为虚拟路由器通过 BGP 路由协议来实现集群内容器之间的网络访问。
●cross-subnet(ipip-bgp混合模式):IPIP 模式和 BGP 模式都有对应的局限性,对于一些主机跨子网而又无法使网络设备使用 BGP 的场景可以使用 cross-subnet 模式,实现同子网机器使用 BGP 模式,跨子网机器使用 IPIP 模式。

2.Calico 主要由以下几个部分组成:

Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:运行在每一台 Host 的 agent 进程,主要负责在宿主机上维护路由规则、网络接口管理等。
BIRD:BGP客户端,负责监听 Host 上由 Felix 注入的路由信息,然后通过 BGP 协议广播在集群里分发路由规则信息,从而实现网络互通。
etcd:分布式键值存储,主要负责网络元数据一致性,确保 Calico 网络状态的准确性。

3.Calico 工作原理:

//IPIP 模式:
Calico 会将容器的 IP 数据包经过 veth pair 设备发送到 tunl0 设备,并被内核的 IPIP 驱动直接封装到宿主机网络的 IP 数据包中,新封装的 IP 数据包再根据 Felix 维护的路由规则发送给目标节点,目标节点通过 IPIP 驱动解包得到原始容器 IP 数据包,然后根据路由规则经过 veth pair 设备送达到目标容器。

//BGP 模式:
Calico 是通过路由表来维护每个 Pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则, 用于接收传入的 IP 包。
有了这样的 veth pair 设备以后,容器发出的 IP 包就会通过 veth pair 设备到达宿主机,然后根据容器要访问的IP和宿主机的路由规则,找到下一跳要到达的宿主机 IP。流量到达下一跳的宿主机后,根据当前宿主机上的路由规则,直接到达对端容器的 veth pair 插在宿主机的一端,最终进入容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
Calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由, 这些节点我们叫做 BGP Peer。

相比IPIP模式,BGP模式下不需要tunl0设备参与报文传输,报文直接通过物理网卡(比如ens33)转发到目标机器上,不会进行二次IP报文的封装,因此从性能上来看,BGP是占优势的。但是由于没有二次封包,BGP模式只能在同一个子网内使用,无法跨网段使用。


目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,但不具备复杂的网络策略配置能力。但Calico以其性能、灵活性而闻名。Calico的功能更为全面,不仅提供主机和pod之间的网络连接,还涉及网络安全和管理,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

4.部署 Calico

curl https://raw.githubusercontent.com/projectcalico/calico/v3.26.1/manifests/calico.yaml 

//在 master01 节点上传 calico.yaml 文件到 /opt/k8s 目录中,部署 Calico
cd /opt/k8s
vim calico.yaml
    #修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "10.244.0.0/16"        #Calico 默认使用的网段为 192.168.0.0/16

    #修改网络模式为BGP  
    - name: CALICO_IPV4POOL_IPIP
      value: "Never"               #设置为Never时为BGP模式,设置为Always时为IPIP模式,设置为CrossSubnet时为混合模式
    - name: IP_AUTODETECTION_METHOD
      value: "interface=ens.*"
  
kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

#修改网络模式为混合模式
kubectl edit ippool 
ipipMode: Always 修改为 ipipMode: CrossSubnet


---------- node02 节点部署 ----------

//在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.10.120:/opt/
scp -r /opt/cni root@192.168.10.120:/opt/

//在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.10.120

//在 master01 节点上操作
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求
kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.10.120

#查看群集中的节点状态
kubectl get nodes


三、部署 CoreDNS

CoreDNS:CoreDNS 是 Kubernetes 的默认 DNS 实现。可以为 K8S 集群内的 Pod 提供 DNS 服务。
使用 CoreDNS 可以为集群中的 service 资源创建一个资源名称 与 ClusterIP 的对应关系解析,从而避免将 service 的 ClusterIP 地址硬编码到应用程序代码中。

1.在所有 node 节点上操作

#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes.default.svc.cluster.local.
Server:        10.0.0.2
Address:    10.0.0.2:53

Name:    kubernetes.default.svc.cluster.local
Address: 10.0.0.1

若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

1.master02 节点部署

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.10.130:/opt/
scp -r /opt/kubernetes/ root@192.168.10.130:/opt
scp -r /root/.kube root@192.168.10.130:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.10.130:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.10.120:2379,https://192.168.10.121:2379,https://192.168.10.122:2379 \
--bind-address=192.168.10.130 \                #修改
--secure-port=6443 \
--advertise-address=192.168.10.130 \            #修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide            #-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

五、负载均衡部署

(可参照博客:Kubeadm - K8S1.20 - 高可用集群部署-五https://blog.csdn.net/weixin_68840588/article/details/140826118

//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 ##### 
//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
    access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 192.168.10.120:6443;
        server 192.168.10.130:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......


//检查配置文件语法
nginx -t   

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER    #lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"    #指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER            #lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33            #指定网卡名称 ens33
    virtual_router_id 51    #指定vrid,两个节点要一致
    priority 100            #lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.10.100/24    #指定 VIP
    }
    track_script {
        check_nginx            #指定vrrp_script配置的脚本
    }
}


//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a                #查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.10.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.10.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.10.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx


##### 在 master01 节点上操作 ##### 
//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods
NAME                    READY   STATUS              RESTARTS   AGE
nginx-dbddb74b8-nf9sk   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
nginx-dbddb74b8-nf9sk   1/1     Running   0          80s              #创建完成,运行中

kubectl get pods -o wide
NAME                    READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE
nginx-dbddb74b8-26r9l   1/1     Running   0          10m   172.17.36.2   192.168.10.124   <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2

//这时在master01节点上查看nginx日志
kubectl logs nginx-dbddb74b8-nf9sk

若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐